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PREFACE

This book is a compendium of joint work produced by the authors during the pe-

riod 1998–2012, most of it published in the American Mathematical Monthly, Math

Horizons, Mathematics Magazine, and The Mathematical Gazette. The published

papers have been edited, augmented, and rearranged into 15 chapters. Each chapter

is preceded by a sample of problems that can be solved by the methods developed in

that chapter. Each opening page contains a brief abstract of the chapter’s contents.

Chapter 1, entitled “Mamikon’s Sweeping-Tangent Theorem,” was the starting

point of this collaboration. It describes an innovative and visual approach for solving

many standard calculus problems by a geometric method that makes little or no use

of formulas. The method was conceived in 1959 by my co-author (who prefers to

be called Mamikon), when he was an undergraduate student at Yerevan University

in Armenia. When young Mamikon showed his method to Soviet mathematicians

they dismissed it out of hand and said “It can’t be right. You can’t solve calculus

problems that easily.”

Mamikon went on to get a Ph.D. in physics, was appointed a professor of astro-

physics at the University of Yerevan, and became an international expert in radiative

transfer theory, all the while continuing to develop his powerful geometric methods.

Mamikon eventually published a paper outlining them in 1981, but it seems to have

escaped notice, probably because it appeared in Russian in an Armenian journal

with limited circulation. (Reference [59] in the Bibliography.)

Mamikon came to California in 1990 to learn more about earthquake prepared-

ness for Armenia. When the Soviet government collapsed he was stranded in the

United States without a visa. With the help of a few mathematicians he had met in

Sacramento and at UC Davis and who recognized his remarkable talents, Mamikon

was granted status as an “alien of extraordinary ability.” While working at UC

Davis and for the California Department of Education, he further developed his

methods into a universal teaching tool using hands-on and computer activities, as

well as diagrams. He has taught these methods at UC Davis and in Northern Cali-

fornia classrooms, ranging from Montessori elementary schools to inner-city public

high schools, and he has demonstrated them at teacher conferences. Students and

teachers alike have responded enthusiastically, because the methods are vivid and

dynamic and don’t require the algebraic formalism of trigonometry or calculus.

A few years later, Mamikon visited Caltech and convinced me that his methods

have the potential to make a significant impact on mathematics education, especially

if they are combined with visualization tools of modern technology. Since then, we

ix
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x PREFACE

have jointly published thirty papers, not only on his sweeping-tangent method,

but also on a variety of topics in mathematics that are amenable to Mamikon’s

remarkable geometric insight.

I have often described Mamikon as “an artesian well of ideas.” It has been a

pleasure to work with him in an effort to share many of these ideas with those who

enjoy the beauty of mathematics.

Tom M. Apostol

Professor of Mathematics, Emeritus, California Institute of Technology
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INTRODUCTION

Since 1997 Tom Apostol and Mamikon Mnatsakanian have co-authored 30 papers,

most of which are on geometry. Their work is strikingly innovative, combining the

classical with the modern. They often surprise the reader with fresh, frequently

astounding conclusions that challenge the imagination. As an added attraction to

the reader, only a modest background is needed to understand their work. Working

together, they have won three Lester R. Ford Awards since 2005 for five papers

published in the American Mathematical Monthly in 2004, 2007, and 2009 — an

enviable achievement.

The citation for their 2004 Ford Award notes that they do classical geometry

with a modern twist, and modern geometry with a classical twist, obtaining new

and surprising results in areas that have been mined for centuries. Their writing is

hailed as a model of the succinct and the elegant, and a rich mix of the new and

the classical.

This book gathers together several of their papers that constitute a royal road

through several parts of classical geometry with spectacular side trips down lanes

that previously were not known. In this volume they have expanded on the original

papers and added exercises. Their writing also brings new richness to calculus.

Newton and Leibniz would likely have been grateful for their wonderfully intuitive

insights. Mamikon’s approach to many integration problems has great power and

should be more widely known.

Apostol and Mnatsakanian breathe new life into classical geometry, and they

frequently praise the old masters, especially Archimedes, who became a hero for

Mamikon when he was a boy. It is hardly surprising that many have remarked that

their work is in the spirit of Archimedes.

The story of the Apostol - Mamikon partnership is too long for this introduction,

but it’s safe to say that it is a remarkably productive collaboration. Over the past 13

years they have co-authored 30 papers, 14 in the American Mathematical Monthly !

Apostol, a member of the Caltech faculty since 1950, is a distinguished and vigorous

eighty-nine-year old number theorist and author of more than 100 papers and 61

books, including his famous two-volume Calculus, which has been translated into

several languages, was published more than a half century ago, and is still in print.

He also is the creator and director of Project Mathematics!, a prize-winning series

of mathematics videos.

Mnatsakanian was a theoretical astrophysicist and professor at Yerevan Uni-

versity in Armenia for many years. In 1990 while working in California on an

xi
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xii INTRODUCTION

earthquake-preparedness program for Armenia, he was stranded in the United

States when the government of Armenia collapsed. Through an amazing sequence

of events, he and Apostol became collaborators. He is the author of more than 80

papers. Mamikon’s mathematical ability is complemented by his artistic talents;

his freehand sketches often rival computer generated drawings. As he describes a

new idea, he invariably draws a helpful picture that provides illumination. I have

had the pleasure of visiting with them at Caltech for the past thirteen years, and on

my visits I have regularly been treated to exciting ideas that they are developing.

Mnatsakanian and Apostol have devised new geometrical methods for solving a

host of mathematical problems, and the first chapter of this book provides an intro-

duction to Mamikon’s theorem, a result of great power. His theorem has consider-

able intuitive appeal, and is easily understood, even by elementary school children.

Many difficult problems from calculus and differential equations are dispatched with

ease by use of his theorem. Take for example a unit tangent continuously moving

around the perimeter of an ellipse with major axis 16 and minor axis 9. Find the

area of the oval swept out by the moving tangent. His theorem makes use of a

sweeping tangent, and underscores the utility of many clever dynamic arguments

that they bring to first solve and then extend many classical problems of geometry.

Read how they use Mamikon’s theorem to solve what is generally regarded as a

more difficult problem - finding the area under a tractrix and above the x -axis.

The extensions of established results found by Apostol and Mnatsakanian are

often stunning and unexpected. For example, it is well known that the area under a

cycloidal arch is three times the area of the generating circle. In Chapter 2 you will

learn the not-so-well-known fact that the latter area relationship holds throughout

the generation of the cycloid. That is, the area of the cycloidal sector at each instant

of its generation is three times the area of the circular segment determined by the

portion of the perimeter through which the circle has rolled.

In Chapter 13, they introduce new and powerful balancing principles, including

double equilibrium. The reader may recall Archimedes’ use of mechanical balancing

methods to prove that the volume of a sphere is two-thirds that of the cylinder

circumscribing it. Their new balancing principles yield not only the volume results

of Archimedes but also a number of surprising relations involving both volumes and

surface areas of circumsolids of revolution as well as higher-dimensional spheres,

cylindroids, spherical wedges, and cylindrical wedges. Apostol and Mamikon adhere

to Archimedes’ style of reducing properties of complicated objects to those of simpler

objects.

In the pages ahead you will encounter many new ideas: tangent sweep, tangent

cluster, cyclogons, circumgons, circumsolids, Archimedean globes, and more. You’re

in for a great ride in the spirit of Archimedes through a beautiful geometrical

landscape that will give you considerable pleasure and a heightened appreciation

for a wonderful subject.

Don Albers

Director of Publications, Emeritus

The Mathematical Association of America
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FOREWORD

Mathematics is not alien and remote but just a very human exploration of

the patterns of the world, one which thrives on play and surprise and beauty.

– Indra’s Pearls: The Vision of Felix Klein

This passage perfectly captures the spirit of the book New Horizons in Geometry, by

Tom Apostol and Mamikon Mnatsakanian. In a remarkable display of mathemati-

cal versatility and imagination, the authors present us with a wealth of geometrical

gems. These beautiful and often surprising results deal with a multitude of geomet-

ric forms, their interrelationships, and in many cases, their connection with patterns

underlying the laws of nature. Lengths, areas and volumes, of curves, surfaces, and

solids, are explored from a visually captivating perspective. The preponderance of

results discussed by the authors are new, and when not new, are presented with

unusual insights and unexpected generalizations.

The exposition is uniformly lucid and delightful, with a heavy emphasis on dy-

namic visual thinking. Some derivations that might ordinarily be carried out using

methods of calculus are accomplished with ingenious visual arguments. For in-

stance, an amazing variety of results are derived visually for cycloids, epicycloids

and hypocycloids, general roulettes, pursuit curves, traces and envelopes of tram-

mels, conic sections, and so forth. Classical constructions and characterizations of

the conics are generalized, with focal points replaced by focal disks, and Dandelin

spheres inside cones replaced by tangent spheres inside twisted cylinders.

Constructions and mechanical interpretations in the spirit of Archimedes involv-

ing centroids and moments are carried to new heights and to higher dimensional

spaces. Several results not amenable to formulation as calculus problems are ob-

tained with elegant geometric methods. There are many engaging and adjunct

geometric treatments of results traditionally approached via calculus. For example,

Mamikon’s Sweeping-Tangent Theorem and the tractrix as involute of the cate-

nary cooperate to give a lovely “proof without words” that the length of an arc

of the catenary is proportional to the area under the arc. Placing these striking

geometric representations alongside their analytic counterparts in calculus reveals

that mathematics has an aesthetic dimension that can serve as a propelling force

behind the human exploration referred to above in the quote from Indra’s Pearls.

Seeing standard calculus topics enriched with examples from these chapters can

enhance the student’s understanding and bring deeper meaning to these topics. We

are reminded that the artistic impulse and intuition carry along, support, and mo-

xiii
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xiv FOREWORD

tivate scientific expertise and technical skill in exploring the world of patterns and

applying our discoveries to the patterns of the world. The student will acquire a

vision of mathematics beyond that of a static formal system and will sense that it

is a structure of great beauty, intriguing, dynamic and multifaceted, the elements

of which can be found embodied in nature. This book should be kept at hand by

instructors in geometry and calculus courses, to provide supplementary material

that will enchant and inspire both students and teachers.

Don Chakerian

Professor of Mathematics, Emeritus, University of California, Davis
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Chapter 1

MAMIKON’S
SWEEPING-
THEOREM

Here are two problems that can be easily solved by the method developed in this chapter.
They are easy to understand but more challenging than they appear at first sight.

The reader may wish to try solving them before reading the chapter.

The tracks traced by the front and rear wheels of a bicycle of length 3 are
shown below. In (a), the rear wheel follows an ellipse with cartesian equation
x2 + 16y2 = 16, and in (b) the front wheel follows the hyperbola y2 − 3x2 = 3.

(a) (b) 

Find the area of the shaded region between the front and rear tracks in each case.

1

TANGENT
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1.1. INTRODUCTION 3

1

Many standard problems in calculus can be easily solved by an innova-
tive visual approach that makes no use of formulas. The method is based
on Mamikon’s sweeping-tangent theorem, a geometrically intuitive result that
is easily understood by very young students. This chapter introduces the
method of sweeping tangents and shows how it can be used to find (without
the machinery of calculus) areas of many plane regions, including an oval ring,
a parabolic segment, a hyperbolic segment, the region under a general power
function, an exponential curve, a logarithmic curve, a tractrix, the region be-
tween two curves traced by the rear and front wheels of a bicycle, the region
enclosed by a cardioid, and by each member of a family of limaçons. The treat-
ment of the parabolic segment and the exponential use geometric properties
of subtangents to these curves, which can also be used to draw tangent lines.

An unexpected application of the method of sweeping tangents is to physics.

In this application, conservation of angular momentum in a central force field

is deduced as an elementary consequence of Mamikon’s sweeping-tangent the-

orem. Subsequent chapters give further applications of the method to both

area and arclength, and also to 3-dimensional problems involving volume and

surface area of solids.

1.1 INTRODUCTION

Calculus is a beautiful subject with a host of dazzling applications. Anyone familiar
with this important branch of mathematics would be amazed to learn that many
standard calculus problems can be easily solved by an innovative visual approach
that makes no use of formulas. Here’s a sample:

Problem 1. Find the area of a parabolic segment.
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4 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

x

x2

0

Figure 1.1: A parabolic segment.

In Figure 1.1 the parabolic segment is the shaded region between the graph of
y = x2 and the x axis from 0 to x. Its area was first calculated by Archimedes more
than 2000 years ago by a method that laid the foundations for integral calculus.
Today, every freshman calculus student can solve this problem: Integration of x2

gives x3/3. A solution without calculus is given in Section 1.10.

Problem 2. Find the area of a region under an exponential curve.

ex

x

Figure 1.2: A region under an exponential curve.

Figure 1.2 shows the graph of the exponential function y = ex, and we want the
area of the shaded region between the curve and the x axis from minus infinity up
to x. Integral calculus reveals that the answer is ex. More generally, if the equation
of the curve is y = ex/b, where b is a positive constant, integration tells us that the
area is bex/b. A solution without calculus is given in Section 1.8.

Problem 3. Find the area of the region under one arch of a cycloid.

A cycloid is the path traced by a fixed point on the boundary of a circular disk
that rolls along a line. For example, a light fastened to the rim of a bicycle wheel
traces a cycloid as the bicycle rolls along a horizontal line. We want the area of the
shaded region in Figure 1.3.
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1.1. INTRODUCTION 5

Figure 1.3: The region under one arch of a cycloid.

This classical calculus problem is more difficult than the first two. First, you
need an equation for the cycloid, which takes some effort to derive. Integration
shows that the area is exactly three times that of the rolling disk, a result we shall
prove in Chapter 2 without using equations or calculus.

These three classical problems can be solved by a new method that relies on
geometric intuition and is easily understood even by very young students. The new
method does not require equations or integration. Moreover, it also solves some
problems that cannot be done with calculus.

For example, look at the path traced by the front wheel of a moving bicycle as
in Figure 1.4. The rear wheel traces another curve. What is the area of the region
between the two tracks? To answer this question using calculus you need equations
for the curves. But, with this new visual approach, no equations are needed and you
can solve the problem easily, regardless of the shape of the bike’s path. A solution
is given in Section 1.4.

Figure 1.4: The region between the tire tracks of a bicycle.
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6 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

1.2 EVOLUTION OF MAMIKON’S THEOREM

Like all great discoveries, Mamikon’s method is based on a simple idea. It evolved
half a century ago, when young Mamikon was presented with a classical geometry
problem involving two concentric circles, with a chord of the outer circle tangent to
the inner one, as in Figure 1.5.

a

Figure 1.5: An annular ring between concentric circles.

The chord has length a, and the problem is: Find the area of the annular ring
between the circles.

To solve it, look at Figure 1.6. The area of the inner circle of radius r is πr2,
and the area of the outer circle of radius R is πR2, so the area of the ring is
πR2 − πr2 = π(R2 − r2). But the two radii and the tangent segment form a right
triangle with legs r and a/2, and hypotenuse R, so by the Pythagorean Theorem,
R2 − r2 = (a/2)2, so the ring has area πa2/4. The final answer depends only on a
and not on the radii of the two circles!

R
r

a/2

Figure 1.6: Ring with inner radius r and outer radius R.

If we knew in advance that the answer depends only on a, we could find it
another way. Shrink the inner circle to a point, and the ring collapses to a disk of
diameter a, with area equal to πa2/4. An “Aha!” revelation, in the words of Martin
Gardner.

Mamikon wondered if there was a way to see in advance why the answer depends
only on the length of the chord. Then he thought of approaching the problem in a
dynamic way. Take half the chord and think of it as a vector of length L tangent to
the inner circle, as in Figure 1.7 (left). By moving the tangent vector around the
inner circle, we see that it sweeps out the annular ring between the two circles, so
the area is being swept by pure rotation.
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1.2. EVOLUTION OF MAMIKON’S THEOREM 7

L

L

Figure 1.7: Ring swept out by a vector of constant length.

Now, translate each tangent vector parallel to itself so that the point of tangency
is brought to a common point, as in Figure 1.7 (right). As the tangent vector moves
around the inner circle, the translated vector rotates once around this common point
and traces out a circular disk of radius L. So the tangent vectors sweep out a circular
disk, as though they were all centered at the same point. And this disk has the
same area as the ring.

Mamikon realized that this dynamic approach would also work if the inner circle
is replaced by an arbitrary oval curve. Figure 1.8 shows the same idea applied to two
ellipses. As a tangent segment of constant length moves once around each ellipse,
it sweeps out a more general annular shape that we call an oval ring.

Figure 1.8: Tangent to an ellipse sweeps out an oval ring.

Again we translate each tangent segment parallel to itself so the point of tan-
gency is brought to a common point. As the tangent moves around the oval, the
translated segments trace out a circular disk whose radius is that constant length.
So, the area of the oval ring should be the area of the circular disk.

The Pythagorean Theorem won’t yield the areas of the oval rings. If the inner
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8 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

oval is an ellipse you can calculate the areas by integral calculus (not a trivial task);
if you do so, you’ll find that all the oval rings have equal areas depending only on
the length of the tangent segment!

Is it possible that the same is true for any convex simple closed curve? Figure
1.9 illustrates the idea for a triangle. As the tangent segment moves along an edge,
it doesn’t change direction so it doesn’t sweep out any area.

Figure 1.9: Tangent of constant length moving around a triangle.

As it moves around a vertex from one edge to the next, it sweeps out part of a
circular sector. And as it goes around the entire triangle it sweeps out three circular
sectors that, together, fill out a circular disk, as shown in Figure 1.9 (right). The
same holds for any convex polygon, illustrated by a hexagon in Figure 1.10.

Figure 1.10: Constant-length tangent moving around a hexagon.

The area of the region swept out by a tangent segment of given length moving
around a convex polygon is equal to the area of a circular disk whose radius is that
length. Therefore the same is true for any convex curve that is a limit of convex
polygons as the number of edges tends to infinity, as suggested by the example in
Figure 1.11.

This leads us to:

Mamikon’s Theorem for Oval Rings. All oval rings swept by a line segment
of given length, with one endpoint tangent to a smooth closed plane curve, have equal
areas, regardless of the size or shape of the inner curve. Moreover, the area depends
only on the length L of the tangent segment, and is equal to πL2, the area of a disk
of radius L, as if the tangent segment was rotated about its endpoint.
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1.3. APPLICATION TO SLICES OF SPHERICAL SHELLS 9

Figure 1.11: Constant-length tangent moving around a many-sided polygon.

Application to the Pythagorean Theorem.

Figure 1.12 illustrates how Mamikon’s theorem can be used to provide a new proof
of the Pythagorean Theorem. If the inner curve is a circle of radius r, the outer
curve is also a circle (of radius R, say), so the area of the oval ring is equal to the

R
r

L

Figure 1.12: Mamikon’s theorem implies the Pythagorean Theorem.

difference πR2 − πr2. But by Mamikon’s theorem, the area of the oval ring is also
equal to πL2, where L is the constant length of the tangent segments. By equating
areas we find R2 − r2 = L2, from which we get R2 = r2 + L2, the Pythagorean
Theorem.

1.3 APPLICATION TO SLICES OF SPHERICAL SHELLS

A spherical shell is the region between two concentric solid spheres. Its cross section
by a plane that intersects both the inner and outer spheres is an annular ring whose
inner and outer radii depend on the cutting plane. Mamikon’s theorem for circular
rings implies a striking and somewhat unexpected result:

The area of an annular ring cut by a plane that intersects both spheres of a
spherical shell is a constant independent of the position and inclination of the cutting
plane.
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10 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

(a) (b)

Figure 1.13: (a) A tangent to the inner circle is also tangent to the inner sphere. (b)
Length of tangent segment is independent of position and inclination of the cutting plane.

Proof. From our earlier discussion we know that the area of an annular ring
depends only on the length of the tangent segment to the inner circle cut off by the
outer circle. It is easy to see that this length is the same for every plane that cuts
both spheres, regardless of its position and inclination.

Simply observe that the tangent segment to the inner circle is also tangent to the
inner sphere from a point on the surface of the outer sphere. Because of spherical
symmetry, all such tangent segments to the inner sphere from the outer sphere
have constant length (Figure 1.13a), for all positions and inclinations of the cutting
plane, so long as it cuts both spheres (Figure 1.13b).

When the foregoing property is applied to slices of equal thickness cut by two
parallel planes that intersect both spheres, we find that all slices have equal volume.
This fact, in turn, implies that all the slices have equal outer surface area. It also
has applications to tomography. Details appear in Chapters 5 and 15.

1.4 CONSTANT-LENGTH TANGENT SWEEP AND TANGENT
CLUSTER OF A PLANE CURVE

Figure 1.14 shows a more general version of Mamikon’s theorem. The lower curve
on the left is a more or less arbitrary smooth plane curve that we call the tangency
curve τ . The set of all tangent segments of constant length defines a region that is
bounded by τ and an upper curve (called the free-end curve σ) traced by the tangent
segment’s other extremity. The exact shape of this region depends on curve τ and
on the length of the tangent segments from τ to σ. We refer to this region as a
tangent sweep.

When each tangent segment is translated parallel to itself to bring the points
of tangency together as before, the set of translated segments is called a tangent
cluster. Figure 1.14 shows a tangent sweep (left) and its corresponding tangent
cluster (right).

Because the tangent segments have constant length, the tangent cluster in Figure
1.14 is a circular sector whose radius is that constant length. By the way, we could
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1.4. CONSTANT-LENGTH TANGENT SWEEP 11

tangent sweep tangent cluster

tangency curve τ

free-end curve σ

Figure 1.14: For a constant-length tangent sweep, the tangent cluster is a circular sector.

also translate the tangent segments so the other endpoints are brought to a common
point. The resulting tangent cluster is a symmetric version of the other one. So we
can state:

Mamikon’s Theorem: Tangent Segments of Constant Length. The area
of a tangent sweep is equal to the area of its tangent cluster, regardless of the shape
of the original curve.

You can see this applied in a real-world illustration when a bicycle’s front wheel
traces out one curve, while the rear wheel (at constant distance from the front
wheel) traces out another curve, as in Figure 1.15 (left).

k

k

k k

k

k

Figure 1.15: Finding the area of the region between two tire tracks.

The area of the tangent sweep is equal to the area of a circular sector depending
only on the length of the bicycle and the change in angle from its initial position to
its final position, as shown in the tangent cluster to the right in Figure 1.15. For
more variations of the bicycle’s path, see Section 15.6.
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12 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

1.5 VARIABLE-LENGTH TANGENT SWEEP. SPACE CURVES

Figure 1.16 illustrates the same ideas in a more general setting. Now the tangent
segments from tangency curve τ to free-end curve σ need not have constant length.
We still have the tangent sweep (left) and the tangent cluster (right), formed by
bringing the points of tangency together at a common point F .

tangent sweep tangent cluster

tangency curve  τ

free-end curve σ

F

Figure 1.16: Variable-length tangent sweep and tangent cluster have equal areas.

Mamikon’s theorem, which seems intuitively obvious by now, is that the area of
the tangent cluster is equal to the area of the tangent sweep. To convince yourself,
consider corresponding equal tiny triangles translated from the tangent sweep to
the tangent cluster.

In the most general form of Mamikon’s theorem, the tangency curve need not
lie in a plane. It can be any smooth curve in space, and the tangent segments can
vary in length, as in Figure 1.17.

Figure 1.17: Variable-length tangent sweep and tangent cluster in space.

The tangent sweep will lie on a developable surface, one that can be rolled out
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1.6. APPLICATION TO THE TRACTRIX 13

flat onto a plane without distortion. The shape of the tangent sweep depends on
how the lengths and directions of the tangent segments change along the curve.
The tangent cluster lies on a conical surface whose vertex is the common point. As
expected, the area of the tangent sweep is equal to that of its tangent cluster.

General Form of Mamikon’s Theorem. The area of a tangent sweep to a
space curve is equal to the area of its tangent cluster on a conical surface.

This theorem, suggested by geometric intuition, is proved in Section 15.10 using
differential geometry. Its importance stems from its wide variety of interesting and
unexpected applications.

1.6 APPLICATION TO THE TRACTRIX

As already mentioned, curves swept by tangent segments of constant length include
oval rings and bicycle-tire tracks. Another such example is the tractrix, the trajec-
tory of a toy on a taut string being pulled by a child walking along a fixed straight
line, as shown in Figure 1.18.

toy 

child

tractri x (path of toy) 

path of child

string
string

Figure 1.18: Tangent sweep and tangent cluster for a tractrix.

To find the area of the region between the tractrix and the x axis using calculus,
you have to find the equation of the tractrix. This in itself is rather challenging
because it requires solving a differential equation, as shown in Section 15.3. Once
you have the equation of the tractrix you can use integration to find the area. This
can also be done, but the calculation (given in Section 15.3) is somewhat demanding;
the final answer is πk2/4, where k is the length of the string. To find this without
calculus, simply note that the tractrix is a particular case of the “bicyclix,” whose
tangent sweep is a circular sector of radius k. The full area is that of a quarter of
a circular disk, or πk2/4.

All these examples with tangents of constant length reveal the striking property
that the area of the tangent sweep can be expressed in terms of the area of a circular
sector without using any of the formal machinery of traditional calculus.

But even more striking are applications to examples in which the tangent seg-
ments are of variable length. These examples reveal the true power of Mamikon’s
method. Before we turn to them we digress briefly to discuss subtangents, which
provide a simple geometric method of drawing tangent lines to curves.
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14 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

1.7 SUBTANGENTS USED TO DRAW TANGENT LINES TO PLANE
CURVES

The tangent line at a point (x, f(x)) on the graph of a function f is the line through
that point with slope f ′(x). The simplest way to draw this line in practice, whether
by hand or on a computer, is to join the point (x, f(x)) with another point known
to be on the tangent line. Sometimes we can find such a point without explicitly
calculating the slope f ′(x).

We illustrate with three exponential curves in Figure 1.19. In the first, the line

x − 1 x

(x,e  ) x (x,e    ) 2x

x − x1
2

x + 1x

(x,e    ) −x

Figure 1.19: A simple way to draw tangents to exponential curves.

joining the point (x−1, 0) with (x, ex) is tangent to the graph of f(x) = ex because
it has the required slope, f ′(x) = ex. In the second, the tangent joins (x− 1

2 , 0) with
(x, e2x), and in the third, the tangent joins (x+ 1, 0) with (x, e−x).

On a general plane curve y = f(x), the magic point on the x axis that also lies
on the tangent line through (x, f(x)) is given by (x − s(x), 0), where s(x) is the
subtangent defined by

s(x) =
f(x)

f ′(x)
(1.1)

at each point x where the derivative f ′(x) is nonzero. In Figure 1.20, s(x) represents
the base of a right triangle of altitude f(x) and hypotenuse of slope f ′(x). From
(1.1) we find f ′(x) = f(x)/s(x), so, if s(x) is known, this gives a simple geometric
procedure for finding the tangent line to an arbitrary point on the graph of f . As in
Figure 1.20, drop a perpendicular from (x, f(x)) to point (x, 0) on the x axis. Move
to the point (x− s(x), 0) on the x axis, and join it to (x, f(x)) to get the required
tangent line.

The method of construction is especially useful when s(x) has a simple form as
in the following examples.

Example 1 (Constant subtangents). Exponential curves were first intro-
duced in 1684 when Leibniz posed the problem of finding all curves with constant
subtangents. The solutions are the exponential curves. Specifically, given a nonzero
constant b we have f(x) = Kex/b for some constant K �= 0 if and only if s(x) = b.
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1.7. SUBTANGENTS USED TO DRAW TANGENT LINES 15

y  = f ( x ) 

( x, f ( x )) 

( x −s ( x ),0) 

s ( x ) 

f ( x ) 

( x ,0) 

tangent line, slope   f   ' ( x ) 

Figure 1.20: Geometric meaning of subtangent. The tangent line at (x, f(x)) passes
through the point (x− s(x), 0) on the x axis.

Examples with b = 1, 1/2, and −1 are shown in Figure 1.19. Incidentally, multiply-
ing a function f by a nonzero constant does not alter its subtangent because f ′ is
multiplied by the same factor, which cancels in (1.1).

In Section 1.8 we will use the constant subtangent property of exponential curves
together with Mamikon’s Theorem to show visually that the area of the region
between the graph of y = ex/b and an arbitrary interval (−∞, x] is bex/b, the same
result one would get by integration.

Example 2 (Linear subtangents). Power functions have linear subtangents.
In fact, for a nonzero constant b we have f(x) = Kx1/b for a constant K �= 0 if and
only if s(x) = bx. In particular, the parabola f(x) = x2 has subtangent s(x) = x/2,
and the hyperbola f(x) = 1/x has subtangent s(x) = −x. Figure 1.21 (left) shows
how tangent lines to the parabola f(x) = x2 can be easily constructed by joining
(x/2, 0) to (x, x2). Figure 1.21 (right) illustrates the tangent construction for the
hyperbola f(x) = 1/x. Here x− s(x) = 2x, so the tangent line passes through the
points (2x, 0) and (x, 1/x).

0 x/2 x

f(x) = x 2

(x, x   )2 f (x) = 1/x

(x,1/x)

0 x 2x

Figure 1.21: Simple geometric construction of tangents to the parabola f(x) = x2, and
the hyperbola f(x) = 1/x.
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16 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

0 x/3 2x/3 x −x 0 x

f(x)=x 3

(x,x  )3 (x,x    )1/2

f(x)=x1/2

Figure 1.22: Simple geometric construction of tangents to f(x) = x3, and to f(x) = x1/2.

For the cubic curve f(x) = x3 we have s(x) = x/3, so we join (2x/3, 0) with
(x, x3) to get the tangent line at (x, x3), as illustrated in Figure 1.22 (left). For the
more general power function f(x) = xr we join (x− x/r, 0) with (x, xr) to get the
tangent at (x, xr). Figure 1.22 (right) furnishes an example with r = 1/2.

1.8 EXPONENTIAL CURVES

Exponential functions are ubiquitous in the applications of mathematics. They
occur in problems concerning population growth, radioactive decay, heat flow, and
other physical situations where the rate of growth of a quantity is proportional to
the amount present. Geometrically, this means that the slope of the tangent line
at each point of an exponential curve is proportional to the height of the curve at
that point.

We have also seen that exponential curves are the only curves with constant
subtangents. By exploiting this fact, we can use Mamikon’s Theorem to find the
area of the region under an exponential curve without using integral calculus. Figure
1.23 shows us how to do it.

bbb

y = e

x

x/b

Figure 1.23: Region under an exponential curve swept by tangents.

The exponential curve y = ex/b has constant subtangents of length b, and the
region in question is swept by the tangent segments cut off by the x axis as the
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1.9. AREA OF A HYPERBOLIC SEGMENT 17

point of tangency moves left from x to minus infinity.
Figure 1.23 also shows each tangent segment translated so that the endpoint on

the x axis is brought to a common point, in this case the lower vertex of a right
triangle. Because the subtangent is constant, the resulting tangent cluster forms a
right triangle of base b and altitude ex/b. Therefore the area of the tangent sweep
is equal to the area of the right triangle, so the area of the region between the
exponential curve and the interval (−∞, x] is twice the area of the right triangle,
which is its base b times its altitude ex/b, or bex/b.

In the language of calculus, we have shown that∫ x

−∞
et/bdt = bex/b,

obtained as an application of Mamikon’s Theorem, without the formal machinery
of integral calculus.

1.9 AREA OF A HYPERBOLIC SEGMENT

The fact that exponential curves have constant subtangents can also be exploited
to establish the classical formula ∫ x

1

1

t
dt = log x, (1.2)

where log x is the natural logarithm of x. If x ≥ 1, the integral represents the area
A(x) of a hyperbolic segment, the region below the graph of the hyperbola y = 1/x
and above the interval [1, x], shown in Figure 1.24.

y

area A(x)

0 x1

y=1/x

Figure 1.24: A(x) is the area of the region below the hyperbola y = 1/x and above the
interval [1, x].

In some calculus textbooks, (1.2) is taken as the definition of the logarithm
function, and then the exponential function is defined to be its inverse function.
(See [1], Secs. 6.3 and 6.12.) Here we adopt an alternative point of view. We
define the exponential as that function with constant subtangent 1 and value 1 at
0, and define the logarithm as the inverse of the exponential. Now we show that
the function A(x) that describes the area of the hyperbolic segment in Figure 1.24,
and which, in the language of calculus, is given by the integral

A(x) =

∫ x

1

1

t
dt, (1.3)
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18 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

is the inverse of the exponential, which means A(x) = log x, and gives (1.2).
Refer to Figure 1.25, which shows the general shape of the graph of the area

function y = A(x) as an increasing function of x for x ≥ 1, with A(1) = 0. Differen-
tiation of (1.3) gives A′(x) = 1/x, or xA′(x) = 1. Now we show geometrically that
xA′(x) represents the subtangent of the inverse of A, and because this subtangent
is constant, the inverse is an exponential. Let B denote the inverse of A, so that

tangent line

0

(x,A(x))

x

y

s[A(x)]=xA'(x)

1

Figure 1.25: Tangent to y = A(x) cuts off a segment on the y axis of length xA′(x) = 1.

y = A(x) if, and only if, x = B(y). Then B[A(x)] = x, which, when differentiated,
gives B′[A(x)]A′(x) = 1. Hence

B[A(x)]

B′[A(x)]
=

x

1/A′(x)
= xA′(x) = 1.

By (1.1), the subtangent function s associated with B is given by

s(y) =
B(y)

B′(y)
,

and when y = A(x), the foregoing equation tells us that s(y) = 1. In Figure 1.25,
the tangent to the graph of y = A(x) at (x,A(x)) cuts off a segment on the y axis
of length 1, the subtangent of the inverse function B. Hence B is an exponential,
B(y) = ey, and its inverse is the logarithm, A(x) = log x, which proves (1.2).

In Figure 1.25, the curve y = log x divides the rectangle of area xy into two
regions. The upper region has area ey − 1 = x − 1, so the lower region has area
xy − (x − 1). In the language of integral calculus, this states that

∫ x

1
log t dt =

x log x− x+ 1, a result derived here geometrically.

1.10 AREA OF A PARABOLIC SEGMENT

We turn next to Problem 1 in the Introduction, perhaps the oldest calculus problem
in history−finding the area of a parabolic segment, shown shaded in Figure 1.26a.

The segment is inscribed in a rectangle of base x and altitude x2. The area R
of the rectangle is x3, but we will not need this explicit formula for R. From Figure
1.26a it is clear that the area of the parabolic segment is less than R/2, half that
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1.10. AREA OF A PARABOLIC SEGMENT 19

0 x

x2

x/20

area S

x/2

(a) (b) (c)

area T

x x

Figure 1.26: (a) Parabolic segment. (b) Tangent sweep of parabolic segment cut off by
the x axis. (c) Region obtained by doubling the lengths of the tangent segments in (b).

of the rectangle. Archimedes made the stunning discovery that the area is exactly
one-third that of the rectangle, or R/3. We will deduce this by a simple geometric
approach using tangent sweeps.

The parabola has equation y = x2, but we shall not need this. We use only the
fact that the subtangent is x/2, so the tangent line above any point x cuts off a
segment of length x/2, as in Figure 1.26b. The tangent sweep in Figure 1.26b is
obtained by drawing all tangent lines to the parabola between 0 and x and cutting
them off at the x axis.

We also use another property of tangents sweeps, called the scaling property,
that is valid for both plane and space curves.

Scaling Property. If each tangent segment of a tangent sweep is scaled (ex-
panded or contracted) by the same positive factor t, then the area of the tangent
sweep is multiplied by t2.

This follows because the tangent cluster of the scaled tangent sweep is also scaled
radially by factor t producing a similar figure with area multiplied by t2.

In Figure 1.26b the parabolic segment is divided into two regions, the tangent
sweep, whose area we call S, and a right triangle, whose area we call T . We will
prove that S = T/3, so the area of the parabolic segment, S + T , is equal to 4T/3.
Because 4T = R, the area S + T of the parabolic segment is R/3, as asserted.

To prove that S = T/3, refer to Figure 1.26c, where each tangent segment from
Figure 1.26b has been doubled in length to reach the y axis, as shown. The area of
the scaled tangent sweep is 4S. But the expanded region consists of two parts, the
portion above the x axis with area S, and the right triangle with area T below the
x axis. Hence 4S = S + T , so S = T/3. This proves that the parabolic segment
has area R/3.
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20 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

In the language of calculus, this simple argument shows that

∫ x

0

t2 dt =
x3

3
,

a result called the quadrature of the parabola. It was first obtained by Archimedes
using a geometric limiting process called the method of exhaustion. Interest in
the method of exhaustion was revived in the 16th century, and the method was
gradually transformed into a powerful discipline known as integral calculus, in which
the quadrature of the parabola is a routine exercise.

1.11 REAL POSITIVE POWERS

Now replace x2 by any power xr with r > 0. When f(x) = xr the subtangent is
x/r, so the tangent above any point x cuts off a segment on the x axis of length
x/r. The example in Figure 1.27 has r = 3, and the tangent above x cuts off a
segment of length x/3. We will use tangent sweeps to show that the cubic segment
below the curve y = x3 and above the interval [0, x] has area R/4, one-fourth that
of the circumscribing rectangle.

x/30

area S
area
 T

xx/3

y x3

0 x

y

(a) (b)

x/3

x3

Figure 1.27: (a) Cubic segment divided into two regions. (b) Tangent segments in (a)
tripled in length.

In Figure 1.27a the cubic segment is divided into two regions, the tangent sweep
(of area S) and a right triangle (of area T ). We will prove that S = T/2.

Expand each tangent segment in Figure 1.27a by a factor 3 so it reaches the y
axis as shown in Figure 1.27b. The enlarged tangent sweep in Figure 1.27b has area
9S. The portion of the enlarged region above the x axis has area S and the portion
below the x axis is a right triangle with edges twice those in Figure 1.27a, so its
area is 4T . Therefore 9S = S + 4T , so S = T/2. The area of the cubic segment is
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1.11. REAL POSITIVE POWERS 21

S + T = 3T/2 = 6T/4 = R/4 because 6T is also the area R of the circumscribing
rectangle. This shows that the area of the cubic segment is R/4, as claimed.

For a general power r > 1 the argument is similar. The general segment can
be divided into two regions, a tangent sweep of area S cut off by the x axis, and a
right triangle of area T. We expand each tangent segment by a factor r to obtain
an enlarged tangent sweep of area r2S cut off by the y axis. The portion of the
enlarged region above the x axis has area S, and the portion below the x axis
is a right triangle of area (r − 1)2T . Therefore r2S = S + (r − 1)2T, so that
S = (r − 1)2T/(r2 − 1) = (r − 1)T/(r + 1), and the area of the general segment is
S + T = 2rT/(r + 1). But 2rT = R, the area of the circumscribing rectangle, so
the area of the general segment is R/(r + 1). In the language of integral calculus
this is equivalent to

∫ x

0

trdt =
xr+1

r + 1
.

The method also works if r = 1, giving x2/2. In this case, the segment in question
is a right triangle with area half that of the circumscribing rectangle. (The tangent
sweep has area S = 0.)

If 0 < r < 1 the graph changes shape from convex to concave, and the tangent
sweep lies above the curve rather than below it. The analysis can be modified to
cover this case, but the problem for r < 1 is easily reduced to that for exponents
greater than 1. The example with r = 1/2 in Figure 1.28 shows us how to proceed
in general.

0 x

1/2

parabolic segment

(x, x         )

Figure 1.28: The area for r = 1/2 can be derived from that of the parabolic segment.

The portion of the rectangle above the graph is congruent to a parabolic segment
with area R/3, so the portion below the graph has area 2R/3 = R/(1 + 1/2). (In
calculus, this method amounts to integration by parts.)

For the general case 0 < r < 1 the portion of the rectangle above the graph of
y = xr is congruent to a general segment with exponent 1/r ≥ 1, so its area is equal
to R/(1 + 1/r). Therefore the portion below the graph has area R − R/(1 + 1/r)
= R/(r + 1), the same formula obtained for r > 1.
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22 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

1.12 GENERAL NEGATIVE POWERS

We turn next to the graph of y = x−r, where r > 1, and we determine the area of
the region over the interval [x,∞] for any x > 0. Integral calculus tells us that the
area is given by ∫ ∞

x

t−r dt =
x1−r

r − 1
. (1.4)

We will prove this geometrically without using integral calculus.

The general segment in question consists of two parts shown in Figure 1.29a,
a right triangle of area T = x1−r/(2r) and a tangent sweep of area S, hence the
segment has area S+T . This region is adjacent to a rectangle of base x and altitude
x−r whose area R = x1−r = 2rT. We will show that S + T = R/(r − 1), the same
result given by (1.4). Incidentally, this shows that S cannot be infinite.

0

area T 
area S 

(x, x   -r

x x/r

area R 

0 x

y

y=x

(a) (b)

x/r

-r

(x, x   -r  )   )

Figure 1.29: (a) A general segment divided into a tangent sweep of area S and a triangle
of area T. (b) The tangent sweep cut off by the y axis has area r2S.

Figure 1.29b shows the region obtained by drawing the tangent segments from
each point of tangency (t, t−r) to the y axis for all t ≥ x. The length of each
tangent segment is r times that of the tangent segment at the same point cut
off by the x axis in Figure 1.29a, so the tangent sweep in Figure 1.29b has area
r2S. It consists of two parts, a right triangle of area (r + 1)2T , and the original
tangent sweep of area S adjacent to it. Therefore r2S = (r+1)2T + S, which gives
S = (r + 1)2T/(r2 − 1) = (r + 1)T/(r − 1). Hence

S + T = (
r + 1

r − 1
+ 1)T =

2rT

r − 1
=

R

r − 1
,

as required.
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1.13 AN ALTERNATIVE APPROACH FOR NEGATIVE POWERS

Another geometric approach is illustrated in Figure 1.30, which shows a tangent
cluster of the tangent sweep in Figure 1.29a obtained by translating each tangent
segment parallel to itself so that the point of tangency is brought to the origin.

x/r x
0

0 x
x/r

(a) (b)

tangent sweep
       area S

tangent cluster

area T

rectangle
of area R

Figure 1.30: (a)Tangent cluster of the tangent sweep in Figure 1.29a adjacent to a triangle
of area T . (b) Reflection of the lower region in (a) and horizontal stretching by r.

By Mamikon’s Theorem, this tangent cluster has area S. The tangent cluster
and the right triangle adjacent to it in Figure 1.30a have area S + T . Next, reflect
this region (tangent cluster plus triangle) through the x axis, giving a congruent
region of area S+T , then stretch it horizontally by a factor r (that is, multiply the
x coordinate of each point in the reflected region by r) to get a new region of area
r(S + T ) indicated by the horizonal shading in Figure 1.30b. The stretched region
is made up of two parts, a rectangle of area R, and the original region with area
S + T in Figure 1.30a. Therefore r(S + T ) = R+ (S + T ), and again we find

S + T =
R

r − 1
.

If 0 < r < 1 the integral in (1.4) diverges, but in this case the area of the region
under the curve y = x−r and above the interval [0, x] is

∫ x

0

t−rdt =
x1−r

1− r
.

This approach can also be adapted to positive powers.

1.14 A REVERSE TYPE OF APPLICATION

In each of the foregoing examples we found the area of a tangent sweep by equating it
to the area of its corresponding tangent cluster, which was easier to determine. But
if the area of the tangent sweep is easier to determine, then Mamikon’s Theorem
can be used as a two-edged sword to give the area of the tangent cluster. This
section exploits this idea to give a geometric proof of the integration formula

∫ x

0

tan2 θ dθ = tanx− x. (1.5)
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24 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

Figure 1.31 (left) shows the graph of the polar equation r(θ) = tan θ as θ varies
from 0 to x. The area A(x) of the shaded region is given by

A(x) =
1

2

∫ x

0

tan2 θ dθ.

Now we show geometrically that A(x) = 1
2 tanx− 1

2x.

The region in Figure 1.31 (left) is the tangent cluster of the tangent sweep to
the unit circle, shown dashed on the right. Here each tangent segment to the unit
circle is cut off by the vertical line through the center of the circle.

1
r( ) = tan θ

x

cluster sweep

x
1

sweep
triangle

sector 

Figure 1.31: The shaded region on the left is the tangent cluster of the tangent sweep
on the right. They have equal areas. The area of the tangent sweep is the area of a right
triangle minus the area of a circular sector.

If the radius makes angle θ with the vertical line, then the corresponding tangent
segment has length tan θ. The area A(x) of the tangent sweep is equal to that of a
right triangle of base 1 and altitude tanx, which is 1

2 tanx, minus the area of the
circular sector subtending the angle x, which is 1

2x. Therefore A(x) = 1
2 tanx− 1

2x
which, when multiplied by 2, gives (1.5).

1.15 APPLICATION TO THE LIMAÇON OF PASCAL

Limaçon as a pedal curve.

Start with a smooth curve Γ and a point P (which need not be on Γ) called a pedal
point. Let F denote the foot of the perpendicular from P to an arbitrary tangent
line to Γ. The locus of all such points F constructed for all tangent lines is called
the pedal curve of Γ with respect to P. When Γ is a circle, as in Figure 1.32a, the
pedal curve is called a limaçon of Pascal. Other pedal curves, with Γ not a circle,
will occur in Chapter 3. In Section 3.13 the limaçon is also described as a roulette.

To show that the pedal description is well suited to the use of Mamikon’s
sweeping-tangent theorem, we calculate the area of the region enclosed by a limaçon,
starting with the case where pedal point P is on Γ.

θ
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C

Γ

T

F

P

O
S

P

O

(a) (b)

Figure 1.32: (a) Cardioid as a pedal curve with the pedal point P on circle Γ. (b) Tangent
sweep of a lune and its tangent cluster, a circular disk. The lune and disk have equal areas.

Area of the region enclosed by a cardioid.

If pedal point P is on the circle, as in Figure 1.32a, the limaçon is a cardioid, denoted
here by C. (A different description of a cardioid as an epicycloid will be given in
Chapter 2, Section 2.4.) The cardioid C in Figure 1.32a encloses the circle Γ and
two congruent crescent-shaped lunes between Γ and C. Each lune is a tangent sweep
from Γ to C. A typical tangent segment from T on Γ to F on C is equal in length
and parallel to a chord PS of the smaller circle with diameter OP, because PFTS
is a rectangle (angle PSO, inscribed in a semicircle, is a right angle). Therefore,
the tangent cluster of each lune is a circular disk D of diameter OP (Figure 1.32b)
whose area we denote by [D]. Thus, each lune has area [D]. The disk bounded by
Γ has diameter 2OP , so its area is 4[D]. Hence the region bounded by the cardioid
C has area 6[D].

P 

O 

Γ

C P 

O 

(a) (b)  

Figure 1.33: (a) Pedal curve C of circle Γ with respect to an interior pedal point P . (b)
Tangent sweep of one lune and its tangent cluster, a circular disk.
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26 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

Area of a region enclosed by a general limaçon.

Start with a circle Γ as in Figure 1.32, but choose the pedal point P inside Γ as
shown in Figure 1.33a. This produces a family of limaçons C depending on the
distance OP . Again, each lune is a tangent sweep from Γ to C, and its tangent
cluster is the circular disk of diameter OP , as in Figure 1.33b. Thus the area of
each lune is equal to the area [D] of the disk D with diameter OP. The area of the
region bounded by C is 2[D] plus the area of the Γ disk. If Γ has diameter d, then
its area [Γ] is λ2[D], where λ is the ratio of diameters, λ = d/OP .

If P is outside Γ as shown in Figure 1.34, the two lunes overlap, creating a loop
as indicated in Figure 1.34a. Surprisingly, the area of each lune is [D], the area of
the disk of diameter OP , just as when P was inside or on Γ.

P

O

P

C

Γ
O

(a) (b)

Figure 1.34: (a) Pedal curve C of Γ with respect to an exterior point P , with a loop
through P . (b) The tangent sweep from Γ to C of the overlapping part of one lune, with
its tangent cluster as a segment of the disk of diameter OP .

To see why, consider first Figure 1.34b, which shows the tangent sweep from Γ
to C on the portion of one lune contributing to the overlapping loop. The corre-
sponding tangent cluster is a segment of the disk of diameter OP , above the chord
from Γ to P . This chord is also tangent to Γ.

Next consider Figure 1.35a, which shows part of the tangent sweep (from Γ to C)
of the portion of the lune without the overlapping part, starting from the tangent
through P and ending with the tangent parallel to OP . The corresponding tangent
cluster is a segment of the disk of diameter OP above the chord from Γ to P .

Finally, Figure 1.35b shows that the remaining tangent sweep of the lune from Γ
to C has as its tangent cluster the left half of the disk of diameter OP . Consequently,
the area of one lune is equal to [D], as asserted.

Thus, for all three cases, P on, inside, or outside circle Γ, we have:
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P

O

P

O

(a )  (b)

Figure 1.35: (a) Tangent sweep from Γ to C starting from the tangent through P and end-
ing with the tangent parallel to OP , together with its tangent cluster. (b) The remaining
tangent sweep from Γ to C has tangent cluster half the disk of diameter OP .

Each lune has area equal to the area [D] of the disk with diameter OP .

To the best of our knowledge, this result has not been previously recorded.

When P is outside Γ, the area of the region enclosed by the entire limaçon C is
the sum of the areas of the two overlapping lunes, which is 2[D], minus the area [L]
of the region L enclosed by the loop, plus the area [Γ] of the Γ disk. To determine
the loop area [L] using sweeping tangents, refer to Figure 1.35b and note that, by
symmetry, [L] is twice the area of the left portion of the tangent sweep from Γ to
C cut off by diameter OP . The right portion of the tangent sweep is exactly the
same type that occurs in the tangent sweep in Figure 1.31, and its area is that of a
right triangle of hypotenuse OP minus the area of a circular sector of the Γ disk.

Animated versions of the sweeping process for each of the three cases, P on,
inside, and outside the circle Γ, are given on the web site

www.its.caltech.edu/∼mamikon/calculus.html

For P on the circle, click on “CardioSwp”, for P inside, click on “PodInArea”, and
for P outside, click on “PoderOutSwp”.

1.16 APPLICATION TO PHYSICS

A fundamental law of physics states that angular momentum is conserved in a cen-
tral force field. We describe this mathematically and show that it is a consequence
of Mamikon’s sweeping-tangent theorem.

ApostolGeoChapter 1 v3.indd   27ApostolGeoChapter 1 v3.indd   27 10/1/12   10:56 AM10/1/12   10:56 AM



28 Chapter 1. MAMIKON’S SWEEPING-TANGENT THEOREM

Physics prerequisites.

Suppose the position of a moving particle is given by a radius vector r emanating
from a fixed point O. We regard r as a vector-valued function of time t. The
free end of r traces a path along which the motion takes place, and the length
|r| represents the distance of the particle from O at time t. The velocity ν of
the particle is defined as ν = dr/dt, the time-derivative of r, and the acceleration
vector a is defined as a = dν/dt, the time-derivative of ν. The velocity vector is
always tangent to the path of the particle and points in the direction of motion. Its
length |ν| represents the speed of the particle. The path traced by the free end of
r is called the tangency curve and is denoted by τ . If the particle has mass m, the
vector mν is called the momentum of the particle, and the cross product r×mν is
called its angular momentum.

The cross product r × ν of two vectors r and ν is perpendicular to the plane
of r and ν, and its length is |r||ν| times the sine of the angle between r and ν. In
particular, the cross product of two parallel vectors is the zero vector 0. When the
vectors r and ν are placed as indicated in Figure 1.36, they form two edges of a
parallelogram which, of course, may change its size and position during the motion.

r

v

O O

(a) (b) 
τ

σ
v

τ σ

r

Figure 1.36: Parallelogram formed by vectors r and ν at two different times.

The free end of ν traces a curve we have denoted by σ. At time t the parallelogram
has opposite vertices at O and on the curve σ, and its area A(t) is given by

A(t) = |r × ν|. (1.6)

The scalar quantity mA(t) is the length of the angular momentum vector at time t.

Motion with radial acceleration.

When the acceleration vector a is always parallel to the radius vector r, the motion
is said to have radial acceleration. If the motion is caused by a force F acting on the
particle, Newton’s second law of motion states that F = ma, hence the acceleration
vector is always parallel to the force vector. A central force field is one with F always
parallel to the radius vector, and hence it produces radial acceleration.

It is easy to show that in a central force field, the parallelogram area A(t) in
(1.6) is constant (independent of t). This is because the derivative of the cross
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product vector is the zero vector 0. In fact,

d

dt
(r × ν) = r × dν

dt
+

dr

dt
× ν = r × a+ ν × ν = 0

because each cross product r × a and ν × ν of parallel vectors is zero. Therefore
r × ν is a constant vector, so its length A(t) is also constant.

Geometric derivation of the law of conservation of angular momentum in a
central force field.

Figure 1.37a shows the tangent sweep traced by the velocity vector ν, and also its
tangent cluster, obtained by translating each tangency point to O.

O

(a) (b)

τ'

O

r

vτ

σ

v

σ

r

r
v

v

τ

Figure 1.37: (a) The tangent sweep of the velocity vector has the same area as its tangent
cluster. (b) For a central force field, the tangent sweep of tangent lines to the hodograph
cut off by curve σ has the same area as its tangent cluster, which is swept by the radius
vector from O to τ .

We know by Mamikon’s Theorem that the tangent sweep and tangent cluster
have equal areas. The free end of the translated velocity vector traces a curve
denoted in Figure 1.37a by τ ′, called the hodograph by Hamilton [44], who used it
to deduce the law of gravitation from the fact that planets move in elliptical orbits
about the Sun. Hamilton made no use of the area of the tangent cluster and missed
an opportunity to deduce the law of conservation of angular momentum in a central
force field by a simple geometric argument, to which we turn next.

Now we will show that A(t) is constant by using Mamikon’s sweeping tangent
theorem twice, following a proof communicated to the authors by Lang Withers
[69]. Figure 1.37b shows the tangent sweep of the tangent lines to the hodograph
τ ′ cut off by σ. Because the acceleration is radial, when the tangent segments to τ ′

are translated so each point of tangency is moved to O, the corresponding tangent
cluster is the region swept by the radius vector from O to τ , and it has the same
area as the tangent sweep from the hodograph to σ.

From this it is easy to show that the area of the parallelogram generated by
r and ν remains unchanged during the motion. Rearrange the shaded regions in
Figure 1.37 as shown in Figure 1.38. The sum of the areas of the two shaded regions
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O

(b)

O

(a)

Figure 1.38: (a) The area of the entire figure is equal to the area of a parallelogram plus
the sum of the areas of the two shaded regions. (b) The area of the same figure is equal
to the area of another parallelogram plus the same sum of the areas of the two shaded
regions, so the two parallelograms have equal areas.

in Figure 1.38a is equal to the sum of the areas of the two shaded regions in Figure
1.38b. From this it is obvious that the parallelograms in Figure 1.38a and 1.38b
have equal areas.

NOTES ON CHAPTER 1

Much of this chapter is adapted from a lecture [3] delivered by Tom M. Apostol
on October 4, 2000 at a colloquium held in honor of his first 50 years at the California
Institute of Technology. The use of subtangents in connection with Mamikon’s
method was introduced in [8] and [10].

The chapter displays a wide canvas of topics that can be treated with Mamikon’s
method. To see them in animated form, consult the web site:

http://www.its.caltech.edu/∼mamikon/calculus.html

Animation reveals in a dynamic way how tangent sweeps are generated, and
how the tangent segments can be translated to form tangent clusters. Animation
also reveals that many classical curves can be generated in a natural way by their
intrinsic geometric and mechanical properties.

In subsequent chapters we apply Mamikon’s method to many plane curves not
treated above, for example, cycloids, epicycloids, hypocycloids, spirals, and pursuit
curves. Applications to arclength are given in Chapters 3 and 11.

The method can also be used to find volumes of solids and their surface areas.
Chapter 5 treats spheres and spherical shells, and generalizations called Archimedean
domes and shells. Chapter 15 gives applications to tomography.

Finally, a philosophical remark about calculus. Newton and Leibniz, the discov-
erers of integral calculus, unified work done by many other pioneers, and related the
processes of differentiation and integration. A connection between differentiation
and integration is also imbedded in Mamikon’s method, because it relates moving
tangent segments with the areas of the swept regions.
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Chapter 2

CYCLOIDS AND
TROCHOIDS

The following problems can be easily solved by the methods developed in this chapter.

The reader may wish to try solving them before reading the chapter.

When a circular disk rolls along a horizontal line, a point P on its circumference
traces a cycloid, shown in (a) and (b). In (a), the tracing point has moved from O
to P while the disk has rolled along the horizontal from O to C. The area A of the
circular segment cut off by chord PC is known.

A

(a) (b)

P

O C

Show that the area of the tusk-shaped region OPC bounded by cycloidal arc OP ,
circular arc PC, and the horizontal segment OC, is 2A.

Refer to (b). Show that the shaded curvilinear region has the same area as the
adjacent square.

31
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2
A point on the boundary of a circular disk that rolls once along a straight

line traces a cycloid. The cycloid divides its circumscribing rectangle into a
cycloidal arch below the curve and a cycloidal cap above it. The area of the
arch is three times that of the disk, and the area of the cap is equal to that of
the disk.

This chapter provides deeper insight into this well-known property by ap-
plying Mamikon’s sweeping-tangent theorem to show that the ratio 3:1 holds
at every stage of rotation. Each cycloidal sector swept by the normal segment
from the point of contact of the disk to the cycloid has area three times that
of the overlapping circular segment cut from the rolling disk. This surprising
result is extended to epicycloids (and hypocycloids), obtained by rolling a disk
of radius r externally (or internally) around a fixed circle of radius R. The
factor 3 is replaced by (3 + 2r/R) for the epicycloid, and by (3 − 2r/R) for the
hypocycloid.

This leads to several interesting consequences. For example, for any cycloid,
epicycloid, or hypocycloid, the area of one full arch exceeds that of one full cap
by twice the area of the rolling disk. Other applications yield (again without
integration) compact geometrically revealing formulas for areas of cycloidal
radial and ordinate sets.

The results are also extended to trochoids, in which the rolling disk rolls

around a more general smooth base curve.

2.1 INTRODUCTION

For the average lay person the word roulette means a gambling game, or perhaps a
small toothed wheel that makes equally spaced perforations like those on sheets of
postage stamps. In geometry a roulette is the locus of a point attached to a plane
curve that rolls along a fixed base curve without slipping. A surprising number
of classical curves can be generated as roulettes – the cycloid, cardioid, tractrix,
catenary, parabola, and ellipse, to name just a few. If the rolling curve is a circle,
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34 Chapter 2. CYCLOIDS AND TROCHOIDS

the roulette is called a trochoid (from the Greek word τρoχoς for wheel). Both the
cycloid and cardioid are examples of trochoids.

3

Figure 2.1: The cycloidal arch has area three times that of the rolling disk.

A cycloid is the path traced by a point on the boundary of a circular disk that
rolls along a straight base line without slipping. The shaded region in Figure 2.1,
obtained by one complete rotation of the disk, is called a cycloidal arch. It is known
that its area is three times that of the rolling disk. Our analysis shows that the
factor 3 reflects a much deeper property of cycloidal sectors.

P

P

CC
O O

P

CO

P

CO

Figure 2.2: Each cycloidal sector OPC has area three times that of the shaded segment
of the rolling disk cut by chord PC, where C is the contact point of the disk and base line.

Figure 2.2 displays various stages of the rotation of the disk, together with the
cycloidal sector OPC bounded by arc OP and two line segments OC and PC. At
each stage we have:

Theorem 2.1. The cycloidal sector OCP has area three times that of the overlap-
ping circular segment cut from the rolling disk by chord CP.

This remarkable geometric property follows easily from an elegant area rela-
tion illustrated in Figure 2.3. The rolling disk is tangent to the upper and lower
boundaries of the rectangle circumscribing the cycloid, at corresponding points of
tangency T and C. The diameter TC divides the rolling circle into two semicircles,
one of which intersects the cycloid at point P as indicated. In Figure 2.3, the line
segment joining P and T cuts off a portion PCT of the rolling disk that we call a
wedge. We call the region PODT , bounded by cycloidal arc PO, line segments OD,
DT and TP , a cycloidal cap. The key that unlocks Theorem 2.1 is the following
surprising relation:
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2.2. AREA OF CYCLOIDAL CAP (PROOF OF LEMMA 2.1) 35

Lemma 2.1. The cycloidal cap PODT has the same area as the wedge PCT of the
rolling disk.

Cap

Wedge

C

P

T

O

D

Figure 2.3: The cycloidal cap PODT has the same area as the wedge PCT .

The foregoing area relations are extended to epicycloids and hypocycloids in
Section 2.4, and to more general trochoids in Section 2.6.

2.2 AREA OF CYCLOIDAL CAP (PROOF OF LEMMA 2.1)

We deduce Lemma 2.1 as a consequence of Mamikon’s sweeping-tangent theorem,
which states that the area of a tangent sweep is equal to that of its corresponding
tangent cluster. First we show that each chord PT is tangent to the cycloid at point
P . This will show that as the disk rolls to the position shown in Figure 2.4, the
tangent segment from the cycloid to the upper horizontal boundary of the rectangle,
starting initially at OD, sweeps out the cycloidal cap PODT .

C 

P 
P' 

T' T 

O 

D 

θ
r 

C' 

Figure 2.4: The cap, a tangent sweep, and its tangent cluster T ′C′P ′ have equal areas.

Instantaneous rotation principle.

To see that PT is tangent to the cycloid at P , note that triangle TPC is inscribed in
the semicircle with diameter TC and hence is a right triangle. Because the disk rolls
along the horizontal line without slipping, its point of contact C is instantaneously
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36 Chapter 2. CYCLOIDS AND TROCHOIDS

at rest, and point P undergoes instantaneous rotation about C with PC as the
instantaneous radius of rotation. This is called the instantaneous rotation principle,
illustrated in Figure 2.5 for a disk bounded by a convex closed curve that rolls
without slipping along a plane curve Γ.

Γ

P

C
Γ

P

C

Figure 2.5: Instantaneous rotation principle. P undergoes instantaneous rotation about
C, so PC is normal to the path of P .

The line segment joining an arbitrary point P on the disk to the point of contact
C with Γ is normal to the path of P . Equivalently, a line through P perpendicular
to PC (shown in Figure 2.5 with arrows) is tangent to the path of P . This principle
is easily established for a polygon rolling about a vertex, and it holds more generally
for all curves that are limits of polygons.

Apply the instantaneous rotation principle to the disk that generates the cycloid
in Figure 2.4. Because the angle TPC is a right angle, the chord PT is perpendicular
to the normal PC and hence is tangent to the cycloid. Thus, the cycloidal cap is a
tangent sweep. To form the corresponding tangent cluster T ′C ′P ′, translate each
chord PT (parallel to itself) by moving all extremities T to one point T ′ on the
right of Figure 2.4. Then the other extremity P moves to point P ′, with P ′T ′ equal
in length and parallel to PT . Obviously, the segments P ′T ′ are chords of a circular
disk congruent to the rolling disk. By Mamikon’s theorem, the area of the tangent
sweep PODT is equal to that of the tangent cluster T ′C ′P ′. The tangent cluster
is congruent to the wedge TCP of the rolling disk in Figure 2.3, and we obtain
Lemma 2.1.

2.3 AREA OF CYCLOIDAL SECTOR (PROOF OF THEOREM 2.1)

Throughout this chapter we employ square brackets to designate areas of regions.
Thus, in Figure 2.6 we use the following notations:

[Sector] = area of the cycloidal sector OPC in Figures 2.2 and 2.6b.

[Tusk] = area of the tusk-like curvilinear region OPC below the cycloid and
outside the disk (unshaded in Figure 2.6a).

[Wedge] = area of the wedge PCT of the circular disk (darker shading in Figure
2.6a).

[Segm] = area of the segment of the disk cut off by PC (darker shading in Figure
2.6b).
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2.3. AREA OF CYCLOIDAL SECTOR (PROOF OF THEOREM 2.1) 37

[Tri] = area of the right triangle TPC in Figure 2.6b.

[Rect] = area of the rectangle ODTC.

In these notations, Theorem 2.1 states that

[Sector] = 3[Segm]. (2.1)

O C

TD

O C

T

P

D

(a) (b)

Tusk

Wedge
Segment

Tusk

P

Cap

Figure 2.6: (a) The rectangle ODTC is the union of Cap, Wedge, and Tusk. (b) The
cycloidal sector OPC is the union of Tusk and Segment.

To begin the proof, Figure 2.6b reveals that [Sector] = [Segm] + [Tusk], so (2.1)
is equivalent to

[Tusk] = 2[Segm].

Now by Lemma 2.1 the area of PODT equals [Wedge], and from Figure 2.6a we
find

[Tusk] = [Rect]− 2[Wedge] = [Rect]− 2[Segm]− 2[Tri], (2.2)

where we used the relation

[Wedge] = [Segm] + [Tri]. (2.3)

In Figure 2.4, OD has length 2r, and OC has the length rθ of the circular arc
CP , so

[Rect] = (2r)(rθ) = 4(
1

2
r2θ). (2.4)

From Figure 2.4 we see that 1
2r

2θ is the area of the central sector of the disk
subtended by central angle θ, which is also equal to [Segm] + 1

2 [Tri]. Therefore (2.4)
implies

[Rect] = 4[Segm] + 2[Tri]. (2.5)

When this is used in the right-hand side of (2.2), we obtain [Tusk] = 2[Segm], which
proves Theorem 2.1.

ApostolGeoChapter 2_v2.indd   7ApostolGeoChapter 2_v2.indd   7 9/27/12   2:29 PM9/27/12   2:29 PM



38 Chapter 2. CYCLOIDS AND TROCHOIDS

Thus, the area of a cycloidal sector is three times that of a segment of the rolling
disk. The area of the segment is given by the elementary formula

[Segm] =
r2

2
(θ − sin θ), (2.6)

obtained by subtracting the area of the isosceles triangle with base PC in Figure
2.4 from the area of the circular sector with central angle θ.

Because the edge PC of a cycloidal sector POC is normal to the cycloid, as we
observed in our discussion of instantaneous rotation, we see that POC is, in fact,
swept by a moving segment normal to the cycloid.

2.4 EPICYCLOIDAL AND HYPOCYCLOIDAL CAP AND SECTOR

(a) astroid (d) cardioid(b) deltoid (c) nephroid 

Figure 2.7: Examples of hypocycloids (a) and (b), and epicycloids (c) and (d).

Instead of rolling a circular disk along a fixed line we now roll it along the
circumference of a fixed circle. Then a point on the boundary of the rolling disk
traces a more general type of cycloid, called a hypocycloid if the disk rolls internally,
with the two centers on the same side of the common tangent, as in Figures 2.7a
and 2.7b, or an epicycloid if it is rolls externally, with the centers on opposite sides
of the common tangent, as in Figures 2.7c and 2.7d. The shape will depend on the
radius r of the rolling disk compared to the radius R of the fixed circle.

In Figure 2.7a, r = R/4 and the hypocycloid is called an astroid.

In Figure 2.7b, r = R/3 and the hypocycloid is called a deltoid.

The epicycloid in Figure 2.7c is a nephroid (r = R/2), and in Figure 2.7d it is a
cardioid (r = R).

The cycloid in Figure 2.1 is the limiting case R→∞.

Extension of Theorem 2.1 to epicycloids and hypocycloids.

We extend Theorem 2.1 to both epicycloids and hypocycloids (Figure 2.8) by re-
placing the factor 3 by a new constant independent of the position of the rolling
disk. In what follows, we assume that r ≤ R/2 for hypocycloids, which entails no
loss in generality because of a double generation theorem of Daniel Bernoulli that
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2.4. EPICYCLOIDAL AND HYPOCYCLOIDAL CAP AND SECTOR 39

ensures that the same family of epicycloids and hypocycloids is generated when
r > R/2. The extended result is:

Theorem 2.2. Every epicycloidal or hypocycloidal sector OPC has area ω± times
that of the overlapping segment of the rolling disk cut by chord PC, with ω+ =
3 + 2r/R for the epicycloid, and ω− = 3− 2r/R for the hypocycloid.

O

P

C

(b)

O

P

C

(a)

R
R

r

r

Figure 2.8: The sector OCP has area ω± times that of the overlapping circular segment
cut off by chord PC.

We will deduce Theorem 2.2 from Lemma 2.2, an extension of Lemma 2.1. In
Lemma 2.1 the cycloidal cap PODT and wedge PCT have equal areas, but in
Lemma 2.2 (illustrated for an epicycloid in Figure 2.9a) the areas are related as
follows:

Lemma 2.2. Every epicycloidal or hypocycloidal cap PODT has area κ± times
that of wedge PCT of the rolling disk, with κ+ = 1 + 2r/R for the epicycloid, and
κ− = 1− 2r/R for the hypocycloid.

Proof of Lemma 2.2. We treat the epicycloid first. Figure 2.9a shows an epicy-
cloidal arc OP traced by a point P on a disk of radius r as it rolls along the outer
circumference of a fixed circle of radius R. The epicyloid lies inside the annular
ring between the fixed circle of radius R and the concentric circle of radius R+ 2r.
This ring plays a role similar to that of the rectangle circumscribing the cycloid in
Figure 2.3.

Now refer to Figure 2.10a. The point P , initially at O, traces the portion OP
of the epicycloid. The point of contact of the two circles, also initially at O, moves
through an angle ϕ to point C as shown, tracing the circular arc OC of length Rϕ.
The circular arc CP of radius r has length rθ, where θ is the central angle in the
rolling circle, as shown. Rolling takes place without slipping so the two circular
arclengths CP and OC are equal:

rθ = Rϕ. (2.7)
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(a) (b)

T usk T usk 
Segment 

Cap

W edge 
T riangle 

Figure 2.9: (a) Ring ODTC is the union of epicycloidal Cap, Wedge, and Tusk. (b)
Epicycloidal sector OPC is the union of Tusk and Segment.

A line through the two centers intersects the outer circle at its point of tangency
T with the rolling circle. Triangle TPC is inscribed in a semicircle of diameter CT ,
so angle TPC is a right angle. The point C serves as the center of instantaneous
rotation of the rolling circle, so PC is normal and PT is tangent to the epicycloid.
As the tangent moves from its initial position OD to that shown in Figure 2.10a,
it sweeps out the cycloidal cap PODT , turning through an angle

α = β + ϕ. (2.8)

Here β is the inscribed angle PTC subtending arc CP , and is half the central angle
θ. From (2.7) we have ϕ = rθ/R = 2βr/R, so (2.8) becomes

α = κ+β, (2.9)

where κ+ = 1+ 2r/R. Form a tangent cluster by translating each tangent segment
PT (parallel to itself) so point T moves to a fixed point T ′ in Figure 2.10b. By
Mamikon’s theorem, the area of the tangent sweep in Figure 2.10a is equal to that
of the tangent cluster in Figure 2.10b. The tangent cluster is a portion of a rosette
because the length of PT is equal to 2r cos β = 2r cos(α/κ+). The rosette area
is equal to that of the circular wedge in Figure 2.10c multiplied by the factor κ+,
because the tangent cluster can be compressed to form the circular wedge in Figure
2.10c by rotating each translated segment P ′T ′ about T ′ to decrease the angle α
by a factor of κ+, from α to α/κ+ = β. But the wedge T ′C ′P ′ in Figure 2.10c
is congruent to the wedge TCP of the rolling disk in Figure 2.10a, so this proves
Lemma 2.2 for the epicycloid.

A similar proof works for a hypocycloidal cap PODT in Figure 2.11a. In this
case α = β − ϕ, giving us κ− = 1− 2r/R.

Proof of Theorem 2.2. We adapt the notation of Section 2.3 to Figure 2.9. Then
Theorem 2.2 states that

[Sector] = ω+[Segm]. (2.10)

But [Sector] = [Tusk] + [Segm], and ω+ = κ+ + 2, so (2.10) is equivalent to
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Figure 2.10: Proof of Lemma 2.2 for an epicycloidal sector.

[Tusk] = (κ+ + 1)[Segm]. (2.11)

To prove (2.11), refer to Figure 2.9a and use Lemma 2.2 and (2.3) to get

[Tusk] = [Ring]− [Cap]− [Wedge] = [Ring]− (κ+ + 1)([Segm] + [Tri]). (2.12)

Here [Ring] is the area of the portion ODTC of the annular ring between the circles
of radii R and R+ 2r. On the other hand, [Ring] = 2ϕr(R+ r) = 2r2θ(1 + r/R) =
[Rect](κ++1)/2 by (2.7) and (2.5), where [Rect] = 2r2θ is the area of the rectangle
OCTD in Figure 2.3. From (2.5) we find

[Ring] = (κ+ + 1)(2[Segm] + [Tri]).

Use this in the right-hand side of (2.12) to obtain (2.11). But (2.11) is equivalent
to (2.10), hence this proves Theorem 2.2 for the epicycloid.

The same analysis based on Figure 2.11 works for the hypocycloid with the
factors κ− = 1− 2r/R and ω− = 2 + κ−, because in this case

α = β − ϕ.
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Figure 2.11: Proof of Lemma 2.2 for a hypocycloidal sector.

Area of full cap and full arch.

When a rolling disk D of area [D] makes one complete rotation, the cycloidal, epicy-
cloidal, or hypocycloidal sector fills a region we call a full arch. The corresponding
cycloidal cap is called a full cap. From Lemma 2.2 and Theorem 2.2 we obtain:

Corollary 2.1. For every epicycloid, the area of a full cap is κ+[D] and the area of
a full arch is ω+[D]. For a hypocycloid, the respective areas are κ−[D] and ω−[D],
and for a cycloid they are [D] and 3[D], where κ± = 1± 2r/R, and ω± = κ±+2 =
3± 2r/R.

The table gives values of r/R, κ±, and ω± for a few classical curves, including
those in Figure 2.7. The first row relates to the cycloid, corresponding to R =∞.

Curve r/R κ+ or κ− ω+ or ω−
Cycloid 0 1 3

Cardioid 1 κ+ = 3 ω+ = 5

Nephroid 1/2 κ+ = 2 ω+ = 4

Deltoid 1/3 κ− = 1/3 ω− = 7/3

Astroid 1/4 κ− = 1/2 ω− = 5/2

Diameter 1/2 κ− = 0 ω− = 2

The next two rows refer to two epicycloids with κ+ = 1 + 2r/R: the cardioid
(r = R) and the nephroid (r = R/2). The next two rows refer to two hypocycloids
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2.4. EPICYCLOIDAL AND HYPOCYCLOIDAL CAP AND SECTOR 43

with κ− = 1 − 2r/R: the deltoid (r = R/3) and the astroid (r = R/4). The last
entry with r = R/2 may seem unusual: this hypocycloid is the diameter of the fixed
circle. The region between the arch and the circle of radius R is a semicircular disk
of area 2πr2, half that of the circle.

Apparently no one has previously investigated the area of a cycloidal cap, but
the result for a full arch is known. It is also derived in Chapter 3 by a different
method (again without integration) in which both the rolling disk and the fixed
circle are obtained as limits of regular polygons.

Because ω± = κ± + 2, Corollary 2.1 also yields the following property (not
previously recorded) that is common to all types of cycloids:

Corollary 2.2. For any cycloid, epicycloid, or hypocycloid, the area of one full
arch exceeds that of one full cap by twice the area of the rolling disk.

Examples are shown in Figure 2.12, where the darker shaded region is the full
arch and the lighter shaded region is a full cap. The difference in shaded areas is
twice that of the rolling disk. If this general property could be established in a
simpler way, then finding the areas of a full arch and a full cap would be almost
trivial, because their sum is simply the area of a rectangle or annular ring.

astroid cardioiddeltoid nephroid diameter

Figure 2.12: The difference in areas of shaded regions is twice the area of the rolling disks.

Another interesting property is inherited from the relation ω+ + ω− = 6. For
every epicycloid obtained by a disk of radius r rolling outside a fixed circle of radius
R, there is a corresponding hypocycloid obtained by a disk of the same radius r
rolling inside, and we call the two cycloidal curves complementary. When the outside
disk and the inside disk turn through the same angle θ, Theorem 2.2 tells us that
the sum of the areas of the complementary sectors in Figure 2.8 is six times that of
the overlapping circular segment cut from the rolling disk by chord PC, regardless
of R. This implies the following property of the combined area of complementary
full arches.

Corollary 2.3. The sum of the areas of one full arch of an epicycloid and its
complementary hypocycloid is equal to six times the area of the rolling disk.

Examples are shown in Figure 2.13 with various values of R, but with a rolling
disk of given radius r. In each case the sum of the darker and lighter shaded areas
is six times that of the rolling disk. Incidentally, their difference is (4r/R)[D].
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Cardioid/CircleT wo Cycloids Deltoid/Complement Nephroid/DiameterAstroid/Complement

Figure 2.13: All combined regions have the same area: six times that of the rolling disk.

2.5 AREAS OF CYCLOIDAL RADIAL AND ORDINATE SETS

The area of an epicycloidal radial set (darker shading in Figure 2.14a) can be calcu-
lated by standard integration techniques based on a polar equation for the tracing
point P involving the parameter θ of the rolling disk. The calculations are lengthy
and the resulting formula is extremely complicated. This section shows how to find
the area as a simple consequence of Theorem 2.2, avoiding polar equations and
integration.
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Figure 2.14: Geometric determination of the area of (a) an epicycloidal radial set O′OP ,
(b) an epicycloidal ordinate set O′OPX, and (c) a hypocycloidal radial and ordinate sets.

Consider the epicycloidal radial set O′OP in Figure 2.14a. It is bounded by
two radial segments O′O, O′P , and the epicycloidal arc OP . Denote its area by
[Radial]. Then we have

[Radial] = [OPC] + [O′OC]− [O′PC], (2.13)

where [OPC] is the area of the epicycloidal sector OPC, [O′OC] is the area of the
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circular sector O′OC, and [O′PC] the area of the triangle O′PC. Theorem 2.2 tells
us that [OPC] = ω+[Segm], where ω+ = 3 + 2r/R and [Segm] is given by (2.6).
Also, [O′OC] = 1

2R
2ϕ = 1

2Rrθ, and [O′PC] = 1
2Rr sin θ, so (2.13) can be written

as

[Radial] = (
R

r
+ ω+)[Segm]. (2.14)

A corresponding formula holds for the area of a hypocycloidal radial set:

[Radial] = (
R

r
− ω−)[Segm].

Both results are contained in the following theorem.

Theorem 2.3. The area of an epicycloidal or hypocycloidal radial set is given by

[Radial] = (
R

r
± ω±)[Segm] = (

R

r
+ 2

r

R
± 3)

r2

2
(θ − sin θ), (2.15)

with the + sign for the epicycloid, and the − sign for the hypocycloid.

Now we can easily find the area [Ordinate] of the ordinate set O′OPX in Fig-
ure 2.14b or 2.14c by adding the area of the right triangle O′XP to that of the
epicycloidal or hypocycloidal radial set O′OP :

Theorem 2.4. The area of an epicycloidal or hypocycloidal ordinate set is given
by

[Ordinate] = (
R

r
± ω±)[Segm] +

1

2
xy (2.16)

with the + sign for the epicycloid, and the − sign for the hypocycloid.

In (2.16), x and y are the rectangular coordinates of P with respect to the
origin O′ in Figure 2.14b or 2.14c. They are given in terms of θ by the well known
parametric equations (which can be derived directly from Figure 2.14):

x = (R± r) sin
rθ

R
− r sin(1± r

R
)θ, y = (R± r) cos

rθ

R
∓ r cos(1± r

R
)θ.

Here the upper sign is used for the epicycloid and the lower sign for the hypocy-
cloid. The area of O′OPX can also be calculated directly by integration, using the
parametric equations. The calculation is tedious and leads to a lengthy unpleasant
formula, in contrast to the compact and geometrically revealing (2.16).

As R→∞ in Figure 2.14b, the vertical segments OO′ and PX remain parallel,
and the portion of the region O′OPX outside the circle of radius R becomes the
shaded region shown in Figure 2.15a. This is the ordinate set of a cycloid, whose
area we denote by B(θ). It is usually calculated by integration, using parametric
equations for the cycloid.

We can also calculate B(θ) by a limiting argument based on (2.15) or (2.16),
involving an indeterminate form of the type ∞−∞. But we prefer to determine
B(θ) directly and more simply from Theorem 2.1, avoiding parametric equations,
integration, and indeterminate forms.
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Figure 2.15: (a) The cycloidal sector OPC is the union of the ordinate set OXP and the
triangle CXP . (b) The two shaded regions have equal areas.

To do so, note that in Figure 2.15a the area B(θ) equals the area of the cycloidal
sector OPC minus the area [CXP ] of the right triangle CXP . Hence by Theorem
2.1 we have

B(θ) = 3[Segm]− [CXP ]. (2.17)

In terms of the angle of rotation θ and the coordinates (x, y) of point P , we have
[CXP ]= 1

2y(rθ − x), and [Segm] is given by (2.6).

Figure 2.15b reveals new area relations of interest. Let A(θ) denote the area
of the shaded region directly above the ordinate set and inside the circumscribing
rectangle. Using Lemma 2.1 it is easy to verify that A(θ) is equal to the area of the
shaded portion of the rolling disk shown in Figure 2.15b, giving us

A(θ) = [Segm] + [CXP ]. (2.18)

From (2.17) and (2.18) we see that

A(θ) +B(θ) = 4[Segm]. (2.19)

In other words, the area of the rectangle with base OX and altitude 2r is always
equal to 4[Segm]. This agrees with (2.5).

T ail 

T ail 

T ail 

Segment Segment 

Segment 
(a) (b) (c) 

Figure 2.16: The area of (a) epicycloidal, (b) cycloidal, or (c) hypocycloidal tail is κ±
times that of the adjacent segment of the rolling disk.

θ

θ
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2.6. AREA OF A GENERAL TROCHOIDAL CAP AND SECTOR 47

The equality of the areas of the shaded regions in Figure 2.15b also follows
from the equality of the areas of the two shaded regions in Figure 2.16b, labeled
“Segment” and “Tail.” Again, Lemma 2.1 shows that for a cycloid we have [Tail] =
[Segm]. For an epicycloidal or hypocycloidal tail, in Figures 2.16a and 2.16c, Lemma
2.2 leads to the result

[Tail] = κ±[Segm]. (2.20)

2.6 AREA OF A GENERAL TROCHOIDAL CAP AND SECTOR

Now we replace the fixed circle of radius R in Figure 2.8 by a more general piecewise
smooth base curve Γ, along which we roll a disk of radius r. The curve Γ can have
one or more points of inflection. In Figure 2.17a there is one such point B, where
a change in the direction of bending occurs .

When the centers of curvature of the disk and Γ are initially on opposite sides of
the common tangent at O, as in Figure 2.17a, we say that the disk rolls externally
to Γ. A point P on the boundary of the disk traces a curve called a epitrochoid,
generalizing the concept of epicyloid.

ϕ

β

θ

ϕ β
α

ϕ

u 
r 

2 r 

ϕ
0 

2 r 

C 

P 

O 

T 

B 

D 

E 

O' E' 

M 

2 r 

(a) 

Γ

(b) 

Γ' 

2 r 

α

2 r 

T' 

P' 

Figure 2.17: Diagram for determining the areas of an epitrochoidal cap and sector.

An epitrochoidal arch is generated after one revolution that begins with P at O
and ends with P at E. The rolling disk in Figure 2.17a is also tangent to the curve
Γ′ parallel to Γ at a constant distance 2r from Γ. The parallel curves are the upper
and lower boundaries of a curvilinear trapezoid that circumscribes the epitrochoidal
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48 Chapter 2. CYCLOIDS AND TROCHOIDS

arch, analogous to the rectangle in Figure 2.3 circumscribing a cycloidal arch, or
the portion of the circular ring in Figure 2.9a circumscribing the epicycloidal arch.

The rolling disk is initially tangent to Γ at O with OD as diameter. When the
disk turns through an angle θ to the position shown in Figure 2.17a, the diameter
CT through C makes an angle with the initial position OD denoted by ϕ. As before,
TPC is a right triangle, PC is normal, and PT is tangent to the epitrochoid at P ,
β = θ/2, and α = β + ϕ is the angle through which the epitrochoid tangent turns
from its initial position OD. The angle ϕ increases as C moves along Γ from O to
B, then decreases as C moves beyond B. After one revolution, P is at endpoint E
and the diameter ET of the disk makes a final angle ϕ0 with its initial position OD.
When the disk rolls along Γ from O to B, the centers of curvature of the disk and
of Γ are on opposite sides of the common tangent at C, and when it rolls from B
to E the centers of curvature are on the same side of the common tangent. There
is no restriction on the two radii of curvature.

If the centers of curvature of the disk and Γ are initially on the same side of the
common tangent at O, we say the disk rolls internally to Γ, and point P traces a
hypotrochoid, a generalization of a hypocycloid. The term trochoid refers to either
an epitrochoid or a hypotrochoid. Our analysis deals primarily with areas relating to
epitrochoids, and we indicate how the results need to be changed for hypotrochoids.

We shall extend both Theorems 2.1 and 2.2 to a general trochoid. Theorem 2.5a
(stated below) relates the area of epitrochoidal cap PODT in Figure 2.17a with the
area [Wedge] of wedge TCP of the rolling disk. Theorem 2.5b relates the area of
epitrochoidal sector POC with the area [Segm] of the segment of the rolling disk cut
off by chord PC. We obtain these relations by comparing areas of the epitrochoidal
cap and sector with those of the corresponding cycloidal cap and sector in Figure
2.3 obtained when a rolling disk of the same radius turns through the same angle θ.
Corollary 2.4 relates the area of a full epitrochoidal cap and a full epitrochoidal arch
with that of the rolling disk. Theorems 2.6 and Corollary 2.5 give corresponding
results for hypothrochoids. As might be expected, the results for a general trochoid
are more complicated than those in Theorem 2.1 (where Γ is a straight line), or in
Theorem 2.2 (where Γ is a fixed circle).

To facilitate the comparisons in Theorems 2.5 we introduce the following nota-
tions that help relate areas of the general epitrochoid in Figure 2.17a to those of
the cycloid in Figure 2.3. It is understood that a rolling disk of radius r rotates
through the same angle θ in both cases, with the contact point moving along the
arc OC, whose length is rθ, the same as the length of circular arc PC.

[Trapez] = area of the curvilinear trapezoid ODTC in Figure 2.17a.

[EpiSect] = area of the sector POC bounded by the line segment PC, the
epitrochoidal arc OP , and the arc OC on Γ in Figure 2.17a.

[EpiCap] = area of the epitrochoidal cap PODT above the epitrochoid in Figure
2.17a.

Our comparisons will be deduced from the following relation in Figure 2.17a:

[EpiSect] = [Trapez]− [EpiCap]− [Tri], (2.21)
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2.6. AREA OF A GENERAL TROCHOIDAL CAP AND SECTOR 49

where, as before, [Tri] is the area of the right triangle TPC. We treat the first two
terms on the right of (2.21) separately.

The area [Trapez] is equal to the average arclength of the two parallel boundaries
times the distance 2r between them. Denote the length of the inner arc OC on Γ by
u, which is a function of angle ϕ in Figure 2.17a, say u = u(ϕ). Then the length of
the outer arc DT on Γ′ is u+2rϕ so their average is u+rϕ. When this is multiplied
by the constant distance 2r between the curves we find that [Trapez] = 2ru+2r2ϕ.
But u = rθ so 2ru = 2r2θ = [Rect], the area of OCTD in Figure 2.6. Hence

[Trapez] = [Rect] + 2r2ϕ. (2.22)

Next we treat [EpiCap], the area of a tangent sweep. Its tangent cluster (with
the same area) is bounded by two loops, shown in Figures 2.17b. It is obtained
by translating each tangent segment PT (parallel to itself) so T moves to a fixed
point T ′ and P moves to P ′. The first loop is formed when the disk rolls along the
first half of arc OE on Γ. The second loop is formed after the disk rolls past the
midpoint M of arc OE. Let t denote the length of tangent segment PT in Figure
2.17a. The point P ′ has polar coordinates (t, α) taken with respect to T ′ as origin,
where α is the angle of rotation of the tangent segment as indicated in Figure 2.17a.
The area [EpiCap] is equal to the area of the corresponding tangent cluster, which
is given by the following integral in polar coordinates:

[EpiCap] =
1

2

∫
t2 dα. (2.23)

For simplicity in notation, we have written this as an indefinite integral, but it is
actually a definite integral from 0 to α that would normally be expressed as

∫ α

0
t2dα′

with a dummy variable α′ representing the angle the tangent makes with its initial
position OD as the tracing point moves from O to P .

Recall that α = β + ϕ, so dα = dβ + dϕ, and (2.23) becomes

[EpiCap] =
1

2

∫
t2 dβ +

1

2

∫
t2 dϕ. (2.24)

Each integral on the right of (2.24) has a natural geometric interpretation. The first
term is the area of a cycloidal cap, the contribution to the tangent sweep that would
occur when Γ is a straight line, of fixed direction. This is equal to [Wedge], the area
of wedge TCP of the rolling disk. The second term occurs because Γ changes its
direction through angle ϕ. Thus we can write (2.24) as

[EpiCap] = [Wedge] +
1

2

∫
t2 dϕ. (2.25)

Using this and (2.22) in (2.21) we obtain

[EpiSect] = [Rect]− [Wedge]− [Tri] + 2r2ϕ− 1

2

∫
t2 dϕ.
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50 Chapter 2. CYCLOIDS AND TROCHOIDS

By (2.3) and (2.5), the first three terms on the right give 3[Segm], where [Segm] is
the area of the circular segment cut from the rolling disk by chord PC. Therefore
the foregoing equation can be written as

[EpiSect] = 3[Segm] + 2r2ϕ− 1

2

∫
t2 dϕ. (2.26)

The last two terms in (2.26) are equal to 1
2

∫
n2dϕ, where

n2 = (2r)2 − t2. (2.27)

The geometric meaning of n2 is revealed by the right triangle TPC in Figure 2.17a,
which has hypotenuse of length 2r and one leg of length t. By the Pythagorean
theorem, n2 is the square of the length of PC, which is normal to the epitrochoid.
Therefore (2.26) takes the form

[EpiSect] = 3[Segm] +
1

2

∫
n2 dϕ. (2.28)

Consequently, (2.25) and (2.26) give us:

Theorem 2.5. (a) The area of an epitrochoidal cap and the area of the wedge TCP
of the rolling disk are related by

[EpiCap] = [Wedge] +
1

2

∫
t2 dϕ. (2.29)

(b) The area of an epitrochoidal sector and the area of the segment of the rolling
disk cut off by chord PC are related by

[EpiSect] = 3[Segm] +
1

2

∫
n2dϕ. (2.30)

Note that an epitrochoidal cap is swept by tangent segments to the epitrochoid,
and an epitrochoidal sector is swept by normal segments to the epitrochoid. Using
tangents and normals to treat cycloidal and epitrochoidal areas is more natural than
using rectangular coordinates.

Applying Theorem 2.5 to a full cap and to a full arch we find:

Corollary 2.4. The area [FullEpiCap] of a full epitrochoidal cap is

[FullEpiCap] = [D] +
1

2

∫ ϕ0

0

t2 dϕ, (2.31)

and the area [FullEpiArch] of a full epitrochoidal arch is

[FullEpiArch] = 3[D] +
1

2

∫ ϕ0

0

n2dϕ. (2.32)

Their sum is
[FullEpiCap] + [FullEpiArch] = 4[D] + 2r2ϕ0. (2.33)

The sum of integrals in (2.31) and (2.32) simplifies because of (2.27).

The sum on the left of (2.33) is the area of the curvilinear trapezoid that cir-
cumscribes the full epitrochoidal arch in Figure 2.17.
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2.6. AREA OF A GENERAL TROCHOIDAL CAP AND SECTOR 51

Corresponding results for hypotrochoids.

The analysis for hypotrochoids is completely analogous to that for epitrochoids.
The main difference is that when the disk rolls internally to Γ, as in Figure 2.11 for
the hypocycloid, the relation α = β + ϕ is replaced by α = β − ϕ. The argument
used to prove Theorems 2.5 now gives us:

Theorem 2.6. (a) The area of a hypotrochoidal cap and the area of the wedge TCP
of the rolling disk are related by

[HypoCap] = [Wedge]− 1

2

∫
t2 dϕ. (2.34)

(b) The area of a hypotrochoidal sector and the area of the segment of the rolling
disk cut off by chord PC are related by

[HypoSect] = 3[Segm]− 1

2

∫
n2dϕ. (2.35)

The corresponding results for a full hypocycloidal cap and a full hypocycloidal
arch are given by:

Corollary 2.5. The area [FullHypoCap] of a full hypotrochoidal cap is given by

[FullHypoCap] = [D]− 1

2

∫ ϕ0

0

t2 dϕ, (2.36)

and the area [FullHypoArch] of a full hypotrochoidal arch is given by

[FullHypoArch] = 3[D]− 1

2

∫ ϕ0

0

n2dϕ. (2.37)

Their sum is

[FullHypoCap] + [FullHypoArch] = 4[D]− 2r2ϕ0. (2.38)

In (2.29) through (2.38), the area of an epitrochoidal or hypotrochoidal object is
expressed (as predicted) in terms of the area of the corresponding cycloidal object,
plus a correction term due to the curvature of Γ.

Area relations independent of Γ.

When a disk of given radius rolls on opposite sides of the curve Γ through the
same angle, the corresponding portions of the epicytrochoidal and hypotrochoidal
arches are called complementary. By adding the results in Theorems 2.5 and 2.6 we
find that the correction terms due to the curvature of Γ cancel, and we obtain the
following remarkable consequences:

Theorem 2.7. (a) The sum of the areas of an epitrochoidal cap and its comple-
mentary hypotrochoidal cap does not depend on Γ, and is twice the area of the
corresponding cycloidal cap:

[EpiCap] + [HypoCap] = 2[CycloCap]. (2.39)
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52 Chapter 2. CYCLOIDS AND TROCHOIDS

(b) The sum of the areas of an epitrochoidal sector and its complementary hy-
potrochoidal sector does not depend on Γ, and is twice the area of the corresponding
cycloidal sector:

[EpiSector] + [HypoSector] = 2[CycloSector]. (2.40)

Proof. To obtain (2.39), add (2.29) to (2.34) and use Lemma 2.1 in the form
[Wedge] = [CycloCap]. To obtain (2.40), add (2.30) to (2.35) and use Theorem 2.1
in the form 3[Segment]= [CycloSector].

In particular, for full arches we have

Corollary 2.6. The sum of the areas of a full epitrochoidal cap and its comple-
mentary full hypotrochoidal cap is equal to twice the area of the rolling disk:

[FullEpiCap] + [FullHypoCap] = 2[D], (2.41)

Corollary 2.7. The area of a full epitrochoidal arch and its complementary full
hypotrochoidal arch is six times the area of the rolling disk:

[FullEpiArch] + [FullHypoArch] = 6[D]. (2.42)

Special case: Centrally symmetric base curve Γ.

An example occurs in Figure 2.18, where the base curve Γ consists of two adjacent
semicircles with their point of contact being a point of central symmetry for Γ. In

Figure 2.18: Epitrochoid used to form half a cardioid.

this example, the epitrochoid is half a cardioid. Here the disk D of radius r and
area [D] = πr2 rotates along a curve Γ composed of two adjacent semicircular arcs
of radius r. One arch of the trochoid so generated consists of the region above Γ
and below the cardioid. The area of the trochoidal arch is 3[D], because it consists
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2.6. AREA OF A GENERAL TROCHOIDAL CAP AND SECTOR 53

of the upper half of the cardioidal region, which we know (from the table) to be
5
2 [D], plus the area of a semicircular disk of area 1

2 [D].
The following general result for a centrally symmetric base curve is a direct

consequence of Corollaries 2.6 and 2.7.

Corollary 2.8. For a centrally symmetric base curve Γ, the area of a full epitro-
choidal cap is [D], and the area of the full epitrochoidal arch is 3[D], the same as
for a cycloid.

Corollary 2.8 is obtained by applying (2.41) and (2.42) to the regions shown
in Figure 2.19. The epitrochoidal cap consists of two parts, C1 and C2, and the
epitrochoidal arch consists of two parts A1 and A2, as indicated in Figure 2.19.
Because of central symmetry, each of these four parts is congruent to a corresponding
symmetric hypotrochoidal part below Γ having the same label. By (2.41) we find
[C1]+[C2] = [D], and by (2.42) we obtain [A1]+[A2] = 3[D], which yields Corollary
2.8.

The difference of the two areas in Corollary 2.8 is 2[D], and their sum, which
represents the area of the circumscribing curvilinear trapezoid, is 4[D], just as in
the case of cycloidal, epicycloidal, and hypocycloidal arches.

A1

A1

A2

A2

C1

C1

C2

C2

Figure 2.19: Proof of Corollary 2.8 for a centrally symmetric base curve.

Area formulas in terms of intrinsic description of Γ.

The area formulas for a full trochoidal arch can also be expressed in an alternative
form. Recall that we have t2 = (2r)2 cos2 β = 2r2(1+cos θ) and n2 = (2r)2 sin2 β =
2r2(1− cos θ), hence the integrals in (2.31) and (2.32) become

1

2

∫ ϕ0

0

t2dϕ = r2ϕ0 + r2I(ϕ0), and
1

2

∫ ϕ0

0

n2dϕ = r2ϕ0 − r2I(ϕ0), (2.43)

where

I(ϕ0) =

∫ ϕ0

0

cos θ dϕ. (2.44)

In (2.44) we express both θ and ϕ as functions of the arclength u of OC on the
curve Γ shown in Figure 2.17a. The length of the arc OC on Γ is equal to rθ, the
length of the circular arc PC on the rolling circle. Hence u = rθ, or θ = u/r. We
cannot express ϕ explicitly in terms of u until Γ is known, but we can indicate the
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54 Chapter 2. CYCLOIDS AND TROCHOIDS

relation as ϕ = ϕ(u), which gives an intrinsic description of Γ. Note that ϕ(u) = ϕ0

when u = 2πr.
Integration by parts in the integral in (2.44) gives

∫ ϕ0

0

cos θ dϕ = ϕ0 +

∫ 2πr

0

ϕ(u) sin
u

r
d
u

r
.

When this is used in (2.43) the term r2ϕ0 cancels and we get

1

2

∫ ϕ0

0

n2dϕ = −r
∫ 2πr

0

ϕ(u) sin
u

r
du. (2.45)

For the first integral in (2.43) the term r2ϕ0 does not cancel and we find

1

2

∫ ϕ0

0

t2dϕ = 2r2ϕ0 + r

∫ 2πr

0

ϕ(u) sin
u

r
du. (2.46)

The formulas in Corollaries 2.4 and 2.5 now give us:

Theorem 2.8. If ϕ(u) is the intrinsic description of Γ, we have

[FullEpiCap] = [D] + 2r2ϕ0 + r

∫ 2πr

0

ϕ(u) sin
u

r
du, (2.47)

[FullEpiArch] = 3[D]− r

∫ 2πr

0

ϕ(u) sin
u

r
du, (2.48)

[FullHypoCap] = [D]− 2r2ϕ0 − r

∫ 2πr

0

ϕ(u) sin
u

r
du, (2.49)

[FullHypoArch] = 3[D] + r

∫ 2πr

0

ϕ(u) sin
u

r
du. (2.50)

Special case: Circular base curve Γ.

For this special case, Theorem 2.2 follows from Theorem 2.5b. For an epicycloid,
Γ is a circle of radius R, and the arclength u = Rϕ = rθ, so ϕ = rθ/R and
dϕ = (r/R)dθ. To deduce Theorem 2.2 we calculate the integral

∫
n2dϕ in (2.30)

by noting that

n2 = (2r)2 sin2 β = 2r2(1− cos 2β) = 2r2(1− cos θ).

Hence

1

2

∫
n2dϕ = r2

∫
(1− cos θ)

r

R
dθ =

2r

R

r2

2
(θ − sin θ) =

2r

R
[Segm],

where we have used (2.6) for [Segm] in Figure 2.6b. Thus (2.30) gives us

[TroSect] = (3 +
2r

R
)[Segm] = ω+[Segm],

in agreement with Theorem 2.2. The result for a hypocycloid is obtained by noting
that dϕ/dθ is negative, so dϕ = −(r/R) dθ. Similarly, Lemma 2.2 follows from
Theorem 2.5a.
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2.7 NEW APPLICATIONS OF THEOREM 2.8

This section applies Theorem 2.8 to some famous curves that have not been previ-
ously used as base curves for generating trochoids.

Cornu spiral as base curve Γ.

This curve, also called a clothoid, was treated by Euler in 1781 in a study of an
elastic spring. It is also involved in problems concerning the diffraction of light.

For our purposes, we define the base curve Γ by the intrinsic equation ϕ(u) =
cu2, where c is a positive constant. If a disk of radius r rolls along Γ, starting at
the point where ϕ = u = 0 and making one complete turn, the integral in (2.48)
with ϕ(u) = cu2 is equal to

c

∫ 2πr

0

u2 sin
u

r
du = cr3

∫ 2π

0

θ2 sin θ dθ = −4π2cr3 = −4πrc[D], (2.51)

where [D]= πr2 is the area of the rolling disk. Using this in (2.48) we find

[FullEpiArch] = 3[D] + 4c[D]2.

The second term can also be written in terms of the parameter a that locates
the poles of the spiral at (±a,∓a). It is known that a2c = π/8, so the formula for
the area of a full epitrochoidal arch now becomes

[FullEpiArch] = (3 +
1

2
(
πr

a
)2)[D].

The corresponding formula for a full hypotrochoidal arch is

[FullHypoArch] = (3− 1

2
(
πr

a
)2)[D].

The example shown in Figure 2.20a has r = a/π, which gives 3 1
2 [D] for the area of

the rightmost arch, and 21
2 [D] for the leftmost arch.

We were pleased to find that, for this value of r, the arclength of the spiral from
the origin to the first vertical tangent is exactly 2a. The difference of these two
areas is [D]. If the same disk makes another complete clockwise turn beyond the
vertical tangent the new trochoidal arch will have area 41

2 [D]. Each further turn
adds another [D] to the area of the trochoidal arch.

When r = a/2 the factor multiplying [D] is (3± π2/8) giving us

[FullEpiArch] ≈ 4.27[D], and [FullHypoArch] ≈ 1.73[D].

When r = a
√
6/π we find

[FullEpiArch] = 6[D], and [FullHypoArch] = 0.

Figure 2.20b shows why [FullHypoArch] = 0 in this case. The trochoid has a cusp
at the point where the radius of the rolling disk is equal to the radius of curvature

ApostolGeoChapter 2_v2.indd   25ApostolGeoChapter 2_v2.indd   25 9/27/12   2:29 PM9/27/12   2:29 PM



56 Chapter 2. CYCLOIDS AND TROCHOIDS

a

a
(a) (b)

3

21
2

1
2

− 1
2

3

1

2
3

+

Figure 2.20: (a) Cornu spiral as base curve, with ϕ(u) = cu2. The spiral winds around
two poles with coordinates (±a,∓a), where a2c = π/8. When r = a/π, the area of
the epitrochoidal arch is 3 1

2
[D], and that of the hypotrochoidal arch is 2 1

2
[D]. In (b),

r = a
√
6/π, and the left portion of the trochoid forms a cusp and intersects the base curve

as shown, forming two arches on opposite sides of Γ (denoted as + and −) whose areas
are equal.

of the base curve. At the cusp, the disk changes its direction of rolling, from
counterclockwise to clockwise. Then the trochoid intersects the base curve forming
two arches, one on the concave side of Γ, the other on the convex side, of equal
areas. In general, [FullEpiArch] is positive, but [FullHypoArch] can be positive or
negative. Their sum is always 6[D].

Logarithmic spiral as base curve Γ.

In this example, the arclength of Γ is given by u = L(eaϕ − 1), (see Example 3 in
Chapter 11) hence ϕ = (1/a) log(1 + u/L), and the integral in (2.48) becomes

1

a

∫ 2π

0

log(1 +
rθ

L
) sin θ dθ. (2.52)

The integral multiplying 1/a can be expressed in terms of the transcendental func-
tions Ci(x) and Si(x), defined by the integrals

Ci(x) = γ + log x+

∫ x

0

cos θ − 1

θ
dθ and Si(x) =

∫ x

0

sin θ

θ
dθ,

where γ is Euler’s constant. A closed-form formula for the integral in (2.52) is 1/a
times the quantity

cos
L

r
(Ci(

L

r
+ 2π)− Ci(

L

r
)) + sin

L

r
(Si(

L

r
+ 2π)− Si(

L

r
))− log(1 +

2πr

L
).
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3.2
3.8

2.8 2.2

Figure 2.21: Logarithmic spiral as base curve, with ϕ(u) = (1/a) log(1 + u/L).

When L = 2πr the foregoing quantity simplifies to

Ci(4π)− Ci(2π)− log 2 =

∫ 4π

2π

cos θ − 1

θ
dθ.

This example is illustrated in Figure 2.21, for which [FullEpiArch]= 3.8[D] and
[FullHypoArch] = 2.2[D] for the areas of the two righmost arches in Figure 2.21.
A similar calculation gives the results [FullEpiArch]= 3.2[D] and [FullHypoArch] =
2.8[D] for the two leftmost arches in Figure 2.21.

Tractrix and catenary as base curves Γ.

For the tractrix as base curve, shown in Figure 2.22a, we have u = −k log(cosϕ)
(see (11.12)), hence ϕ(u) = exp(− arccos(u/k)), and the integral in (2.48) takes the

(a) (b)

k

k

3.34

2.66

2.73

3.27

Figure 2.22: (a) Tractrix as base curve, with ϕ(u) = exp(− arccos(u/k)). (b) Catenary
as base curve, with ϕ(u) = arctan(u/k).

form ∫ 2πr

0

exp(− arccos
u

k
) sin

u

r
du = r

∫ 2π

0

exp(− arccos
rθ

k
) sin θ dθ.
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58 Chapter 2. CYCLOIDS AND TROCHOIDS

When r = k, the area of one epitrochoidal arch is 3.27[D], and that of the
hypotrochoidal arch is 2.73[D], where [D] is the area of the rolling disk.

For the catenary as base curve, shown in Figure 2.22b, we have u = k tanϕ and
the integral in (2.44) takes the form

∫ 2πr

0

arctan
u

k
sin

u

r
du = r

∫ 2π

0

arctan
rθ

k
sin θ dθ.

When r = k, the area of one epitrochoidal arch is 3.34[D], and that of the
hypotrochoidal arch is 2.66[D].

Cycloid as base curve Γ.

This base curve is a cycloid, generated by a disk of radius R rolling along a horizontal
line.

3.7

2.3

3.4

2.6

(a) (b) 

Figure 2.23: Cycloid generated by disk of radius R as base curve. In (a), u = 4R sinϕ,
and in (b) u = 4R(1− cosϕ).

In Figure 2.23a, a disk of radius r rolls along the cycloid from its highest point,
so that u = 4R sinϕ. The radii r and R are related by 2πr = 4R, half the length
of the cycloid. In Figure 2.23b, u = 4R(1 − cosϕ), and a disk of radius r with
2πr = 8R rolls along the cycloid from one end to the other. In (a), the integral in
(2.48) takes the form

∫ 2πr

0

arcsin
u

4R
sin

u

r
du = r

∫ 2π

0

arcsin
θ

2π
sin θ dθ.

and in (b) it becomes

∫ 2πr

0

arccos(1− u

4R
) sin

u

r
du = r

∫ 2π

0

arccos(1− θ

π
) sin θ dθ.

This yields the values 3.4[D] and 3.7[D] for the two epitrochoidal arches, and the
values 2.6[D] and 2.3[D] for the hypotrochoidal arches.
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Involute of a circle as base curve Γ.

Figure 2.24a shows the epitrochoid and hypotrochoid formed by rolling a circle of
radius r = a/2 along the involute of a circle of radius a. In this case we have
u = rϕ2 (see Section 11.11), hence ϕ(u) =

√
u/r and the integral in (2.48) takes

the form ∫ 2πr

0

√
u

r
sin

u

r
du = r

∫ 2π

0

√
θ sin θ dθ.

This yields 3.6[D] and 2.4[D] for the areas of the corresponding arches.

a

3.6

(a) Involute of circle                                       (b) Hyperbolic Spiral

2.4 ~2

~4

Figure 2.24: (a) The base curve is the involute of a circle of radius a, and the rolling disk
has radius r = a/2. (b) The base curve is a hyperbolic spiral with intrinsic description
ϕ(u) = 2πu/(a− u), and the rolling disk has radius r = a/(6π).

Hyperbolic spiral as base curve Γ.

Figure 2.24b shows the epitrochoid and hypotrochoid formed by rolling a disk of
radius r = a/(6π) along a base curve Γ with arclength function u(ϕ) = aϕ/(ϕ+2π).
Then u(0) = 0 and u(ϕ) → a as ϕ → ∞. We call Γ a hyperbolic spiral; it has
intrinsic description ϕ(u) = 2πu/(a − u). For this choice of ϕ(u) the value of the
integral in (2.48) is very nearly equal to −πr2, and this yields values nearly equal
to 4[D] and 2[D] for the areas of the corresponding arches.

A challenging extremum problem.

The foregoing examples suggest an interesting question:

How large can the area of an epitrochoidal arch be when a convex base curve has
a perimeter equal to that of the rolling disk?

Figure 2.25 shows the prototype of this problem. Here the base curve is a line
segment, the trochoid is a cycloid, and the area of the cycloidal arch is exactly 3[D],
where [D] is the area of the rolling disk. To interpret the problem geometrically,
imagine the cycloidal arch dissected into a large number of thin vertical slices, like
the teeth of a comb, as suggested by Figure 2.25. The base of the comb has length
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60 Chapter 2. CYCLOIDS AND TROCHOIDS

= 3

cycloidal c omb 

Figure 2.25: Dissecting a cycloidal arch.

equal to the perimeter of the rolling disk. The next three figures show the base of
the comb wrapped along various base curves of the same perimeter. Figure 2.26
shows two such base curves, one obtained by folding the original base line in half

= 5 = 5

Double-line base: CycloE gg Circle base: Cardioi d 

Figure 2.26: Baseline folded two different ways to form epitrochoidal arch of area 5[D].

to form a double base line as Γ, the second by wrapping the base line along a circle
with the radius of the rolling disk to form a circular base curve Γ. In the two
examples, the corresponding epitrochoidal arch has area exactly 5[D].

Figure 2.27 shows the original base line folded to form an equilateral triangle
and a square, each with perimeter equal to the circumference of the rolling disk.
The corresponding epitrochoidal arches have approximate areas 5.3[D] and 5.4[D],
respectively. In Figure 2.28a, the original horizontal base line is divided into four

~ 5.3 ~ 5.4 
T riangle base Square base 

Figure 2.27: Baseline folded to form an equilateral triangle and a square.

equal parts and refolded to form another double base line. This time the disk is
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2.8. SPECIAL RESULTS ON CYCLOIDAL AREA 61

rolled as indicated in the drawing to form an arch of area 5.80[D]. A slightly larger
area, 5.87[D] is obtained by using the triangular base shown in Figure 2.28b. These
examples suggest that the maximum possible area of the epitrochoidal arch is 6[D].
The problem can also be formulated analytically: We seek a convex base curve

described intrinsically by ϕ(u) that maximizes the integral
∫ 2π

0
ϕ(rθ) sin θ dθ.

~ 5.80
(a) Double-line base

~ 5.87
(b) Obtuse triangle base

Figure 2.28: Baseline folded to form a double line and an obtuse isosceles triangle.

2.8 SPECIAL RESULTS ON CYCLOIDAL AREA

Roberval and Toricelli were the first to calculate the area of a cycloidal arch. Rober-
val introduced a ”companion” curve that, in fact, is a sine curve. The diagrams in
Figure 2.29 use essentially the same idea but without the auxiliary sine curve.

Figure 2.29: Half a cycloidal arch inscribed in a rectangle.

We leave it to the reader to explain how the diagrams provide a proof without
words that the area of the shaded region is equal to that of the rolling disk. From
this fact it is easy to deduce that the area of the region under a full cycloidal arch
is three times that of the rolling disk.

Further charming contributions to the history of cycloidal quadrature by Huy-
gens, Leibniz, and Johannis Bernoulli, are illustrated in Figure 2.30, where a rect-
angle circumscribes a cycloidal arch, the generating circular disk is at its center,
and a horizontal line bisects the rectangle.

In Figure 2.30a, the upper half of the rectangle is bisected by a horizontal dashed
line. In 1658, Huygens proved that the area of the shaded cycloidal segment cut off
by the upper dashed line is equal to the area of half the inscribed hexagon, which
we display as the area of the adjacent lower equilateral triangle.
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62 Chapter 2. CYCLOIDS AND TROCHOIDS

++
+

Huygens Leibniz

BernoulliBernoulli

(a) (b)

(c) (d)

Figure 2.30: Quadrature of special cycloidal segments when the circular disk is centrally
located, by (a) Huygens, (b) Leibniz, and generalizations by J. Bernoulli in (c) and (d).

In Figure 2.30b, the shaded curvilinear segment is cut off by a chord of the
cycloid. In 1678, Leibniz proved that the area of this segment is equal to that
of the shaded isosceles right triangle inside the disk. The quadrature results of
Huygens and Leibniz are of special interest because when the disk has unit radius
each curvilinear segment has the same area as a polygonal region whose area is an
algebraic number, hence not a rational multiple of π. By contrast, the area of a
complete cycloidal arch is 3π.

Figures 2.30c and 2.30d generalize both these results, using two horizontal
dashed lines whose distances from the upper and central lines in Figures 2.30a
and 2.30b are equal. In 1699, Bernoulli proved that the area of the cycloidal sector
in Figure 2.30c is the sum of the areas of the two right triangles shown, and the
area of the small cycloidal sector in Figure 2.30d is the difference of the areas of the
triangles. Figure 2.30a is the special case in which the two dashed lines coincide,
while Figure 2.30b is the special case in which the distance between the dashed
lines is the radius of the disk. Bernoulli was so proud of this result that he included
the diagram in Figure 2.30c on the title pages of all four volumes of his collected
works. When the disk has unit radius, the areas of the Bernoulli triangles might be
rational multiples of π, except for the special cases of Huygens and Leibniz, when
they are not.

Encouraged by these results, we consider a segment cut from a general point of
a cycloid to its highest point. In Figure 2.31a, the general point is lower than the
center line, and the segmental area is the sum of the areas of the two shaded right
triangles. We have verified that the area relations in Figure 2.31a can be obtained
by our method using Figure 2.32, which shows a companion to Lemma 2.1:

The area of the cycloidal tail (tangent sweep) is equal to that of the adjacent
circular segment (tangent cluster).

In Figure 2.31b, the general point is above the center line, and the segmental
area is the difference of the triangular areas. By combining two such segments with
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+

+ +

(a) (b) (c) 

Figure 2.31: The area of a cycloidal segment is the sum of the areas of the shaded triangles
in (a), and their difference in (b). Bernoulli’s result in Figure 2.30c can be deduced from
Figure 2.31c.

the triangle between them and using intricate dissections, we can deduce the area
of a general cycloidal segment in Figure 2.31c, and in particular Bernoulli’s special
segments, both of whose endpoints are above the center line.

Figure 2.32b shows the cycloidal segment of Figure 2.31a inscribed in a triangle
whose horizontal base has length s equal to the length of the circular arc bounding
the adjacent circular segment. The result in Figure 2.31a can be deduced from the
diagram in Figure 2.32c, and a similar diagram yields the result in Figure 2.31b.
We omit the details.

(a) (b) (c)

segment 
circular

cycloida l
tail

cycloidal  
segment 

s

s

t

t

r

h

Figure 2.32: (a) Segment and tail have equal areas. (b) Triangle circumscribing the
cycloidal segment. (c) Proof of the area relations in Figure 2.31a.

As a companion to the special results of Huygens, Leibniz, and Bernoulli in
Figure 2.30, we include (without comment) our own special result in Figure 2.33:
the shaded curvilinear region has the same area as the adjacent square. When the
disk has unit radius the curvilinear region has area 1.

Figure 2.33: The shaded curvilinear region has the same area as the square.
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64 Chapter 2. CYCLOIDS AND TROCHOIDS

2.9 EPICYCLOIDAL AND HYPOCYCLOIDAL CAPS REVISITED

This section relates the areas of epicycloidal and hypocycloidal caps with an in-
teresting question. One circular disk of radius r rolls along the circumference of
another of radius R, where the ratio of the radii is an integer, say R = nr. On
a diameter of the rolling disk, draw a vertical vector that we use as an indicator.
Question: How many turns does the indicator make when the smaller disk rotates
completely along the larger?

Because the smaller disk returns to its original position after rolling n times
along the larger disk, one would expect the number of turns of the indicator to be
n, but the actual number is n+ 1 if the smaller disk rolls externally, and n− 1 if it
rolls internally.

For example, if n = 1 (r = R), the indicator makes two turns externally and no
turns internally! This is illustrated in Figure 2.34a; you can try to verify it directly
with two coins of the same size. Figure 2.34b illustrates what happens when n = 2,
showing both external and internal rolling; the same occurs for general n. As the
small disk rolls clockwise externally, the indicator also turns clockwise, as indicated
for n = 2 by the intermediate positions in Figure 2.34b, and the indicator has made
n + 1 complete turns when it returns to its original position. On the other hand,
when the small disk rolls internally clockwise, the indicator turns counterclockwise
making n− 1 complete turns when it returns to its original position.

(b)

n = 2n = 1

(a)

Figure 2.34: Number of turns of the indicator when disk of radius r rolls n times along the
circumference of disk of radius nr. In (a), n = 1: the indicator makes 2 turns externally,
no turns internally. In (b), n = 2: the indicator makes 3 turns externally, 1 turn internally.

From the fact that the number of turns of the indicator is n± 1, it can be shown
that the sum of the areas of complementary epicycloidal and hypocycloidal caps is
2[D], where [D] is the area of the rolling disk, regardless of the radii. (See Corollary
2.4.) Their difference is 4(r/R)[D], as obtained in Section 2.4 for their arches.

NOTES ON CHAPTER 2

Sections 2.1 through 2.5, and 2.8, first appeared in [24], which was awarded a Lester
R. Ford Award in August 2010. The material in Sections 2.6 and 2.7 has not been
previously published. Some area results will be deduced differently in Chapter 3,
using rolling polygons instead of circles. Arclength relations will be discussed in
Chapter 3 and also in Chapter 11.
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Chapter 3

CYCLOGONS AND
TROCHOGONS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

Figure (a) shows a polygonal track with four edges of unit length joining A and
B. A unit square rolls along one side of the track with one vertex tracing the larger
arch shown, and it also rolls along the opposite side tracing the smaller arch.

A B
A B

(a) (b) 

Show that the sum of the arclengths of the two arches does not depend on the
track, and that the same is true for the sum of the areas of the two shaded regions
between the arches and the track.

Prove corresponding results for a circle rolling along a smooth curve as in (b).

65
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3
When a regular polygonal disk rolls along a straight line, each vertex traces

a curve we call a cyclogon. More generally, when a regular disk with n sides rolls
around another with m sides, a point rigidly attached to the rolling disk traces
a curve we call a trochogon. This chapter determines areas of trochogonal arches
without using calculus. In the limiting case when n and m tend to infinity, the
polygonal disks become circular and we obtain classical results for various
types of cycloidal arches described in Chapter 2.

When the tracing point is a vertex, the same elementary treatment yields
arclengths of the corresponding trochogonal curves, and leads to classical re-
sults in the limiting case when the polygonal disks become circular. These
arclength results are also obtained in Chapter 11 by a different method.

We also introduce autogons, curves traced by a point rigidly attached to an
arbitrary n-gon that rolls around a fixed mirror image of itself. A comparison
theorem shows that the area of the region inside an autogon is twice that of a
cyclogonal arch obtained by rolling the polygon along a line. A corresponding
theorem is obtained for arclengths. Limiting cases yield classical theorems of
Steiner.

The results are generalized to incomplete trochogons and autogons. Appli-

cations are given to elliptic, hyperbolic, and parabolic catenaries.

3.1 INTRODUCTION

In Chapter 2, Mamikon’s sweeping-tangent theorem was used to show that the area
A of the cycloidal arch in Figure 3.1 is equal to three times the area C of the rolling
circular disk,

A = 3C, (3.1)

and the significance of the factor 3 was explained.
This chapter solves the more general problem, in which the rolling circle is

replaced by a regular polygon. The problem is treated by an elementary geometrical
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68 Chapter 3. CYCLOGONS AND TROCHOGONS

Figure 3.1: Cycloid traced by a point on the circumference of a rolling circle.

method, and the area formula for the cycloid is obtained as a limiting case. We
use the formula for the area of a circular sector, but there is no need to know the
cartesian or parametric equations representing the cycloid.

3.2 CYCLOGONS

A cyclogon is traced by a vertex of a polygon that rolls without slipping along a
straight line. Like the cycloid, a cyclogon consists of a sequence of arches resting
on the line, as shown by the example of a rolling regular pentagon in Figure 3.2.

Figure 3.2: Cyclogon traced by a vertex of a rolling regular pentagon.

Each arch, in turn, is composed of circular arcs, equal in number to one fewer than
the number of vertices of the polygon. The radius of each arc is the distance from
the moving vertex to the pivotal vertex.

We begin with cyclogons generated by regular polygons. Let A denote the area
of the region above the line and below one of the arches, let P denote the area of
the rolling polygon, and let C denote the area of the disk that circumscribes the
polygon. We will prove the following elegant result that generalizes (3.1).

Theorem 3.1. For every cyclogon generated by a regular polygon

A = P + 2C. (3.2)

The circle can be regarded as the limiting case obtained by letting the number of
edges of the polygon increase without bound. Similarly, the cycloid is the limiting
case of a cyclogon. Then (3.1) is revealed as a limiting case of (3.2).

The proof of Theorem 3.1 for a rolling n-gon is given in Section 3.3. Before
discussing the general n-gon we deduce (3.2) directly for two simple examples.
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Example 1 (Rolling equilateral triangle).

Figure 3.3 shows one arch of a cyclogon traced by a vertex of a rolling equilateral
triangle Δ whose edges have length a. The region under the arch and above the
line consists of two equal circular sectors of radius a, and one copy of Δ. Each

Figure 3.3: One arch of a cyclogon traced by a rolling equilateral triangle.

circular sector has area (π/3)a2 which is also the area C of the circular disk that
circumscribes Δ. Therefore

A = area ofΔ + 2× π

3
a2 = area ofΔ + 2C,

which proves (3.2) in this case.

Example 2 (Rolling square).

Figure 3.4 shows a cyclogon traced by a vertex of a rolling square. The region
under the arch consists of two right triangles plus three circular quadrants, two of
radius a (the edge-length of the square), and one of radius a

√
2 (the diagonal of the

Figure 3.4: One arch of a cyclogon traced by a rolling square.

square). The two right triangles have total area a2, the area of the rolling square,
and the total area of the three circular quadrants is

2× π

4
a2 +

π

4
(a
√

2)2 = 2× π(a

√
2

2
)2 = 2C.

Therefore we have A = a2 + 2C, which proves (3.2) in this case as well.
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3.3 AREA OF A CYCLOGONAL ARCH GENERATED BY A
REGULAR POLYGON

In the general case of a regular polygon with n vertices, the region under one arch
of the cyclogon consists of n−2 triangles and n−1 circular sectors, each subtending
an angle of 2π/n radians. These triangles can be regarded as footprints left by the
triangular pieces obtained by dissecting the original polygon with diagonals from a
vertex to each of the nonadjacent vertices, as illustrated in Figure 3.5 for n = 6.

Figure 3.5: Footprints left by triangular pieces of a rolling hexagon.

The sum of the areas of the triangles is equal to the area P of the region enclosed
by the regular polygon. This is illustrated for the regular hexagon in Figure 3.6.

Figure 3.6: Visualizing the distribution of the footprints in Figure 3.5.

The radii of the circular sectors are the lengths of the segments from one vertex
to the remaining n− 1 vertices. A sector of radius rk subtending an angle of 2π/n
radians has area πr2k/n, so the sum of the areas of the n− 1 sectors is equal to

π

n

n−1∑
k=1

r2k.

From Theorem 14.2 in Chapter 14, it follows that the sum of the squares of the
radii is given by

n−1∑
k=1

r2k = 2nr2, (3.3)

where r is the radius of the circle that circumscribes the polygon. Therefore the
sum of the areas of the sectors is equal to 2πr2, which is 2C, twice the area of the
circumscribing disk, thus proving A = P + 2C, as stated in (3.2) of Theorem 3.1.
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Another interpretation of Theorem 3.1.

When (3.2) of Theorem 3.1 is written as

A− P = 2C

it reveals an interesting fact. Consider all regular polygons circumscribed by a
common disk of area C. As we change the polygon, areas A and P will change, but
their difference A− P does not change because it is always equal to 2C.

Some examples are shown in Figure 3.7, where each shaded region has area
A−P . It is not obvious from the figure that all the shaded regions have equal area.
Nevertheless, Theorem 3.1 tells us that each area is 2C. The last example is the
degenerate case when the polygon consists of two edges, and the first example is the
limiting case when the regular polygon becomes a circle and the cyclogon becomes
a cycloid.

cycloid cyclogon n = 4 cyclogon n = 3 cyclogon n = 2

...

Figure 3.7: All shaded regions have equal area.

3.4 TROCHOGONS: GENERALIZED CYCLOGONS

As mentioned earlier, a cycloid is the curve traced by a point on the circumference
of a circular disk that rolls without slipping along a straight line. It consists of
a periodic sequence of congruent arches resting on the line. If the point is rigidly
attached to the disk but not on the circumference it traces a curtate cycloid if the
tracing point lies inside the disk, and a prolate cycloid if it lies outside the disk.
Figure 3.8 shows an example of each type.

cycloid
prolate cycloid

curtate cycloid

Figure 3.8: A cycloid, a curtate cycloid, and a prolate cycloid traced by a point rigidly
attached to a rolling disk.

If the rolling disk is replaced by a regular polygon, each vertex traces a cyclogon.
In Theorem 3.1 we proved that the area A of the region under one arch of a cyclogon
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is given by
A = P + 2C,

where P is the area of the rolling polygon and C is the area of the disk that
circumscribes the polygon.

To better understand why the term 2C appears in this formula, we treat the
more general area problem for curtate and prolate cyclogons and obtain a result
that is surprisingly simple:

Theorem 3.2. If Cz is the area of a disk whose radius is the distance from the
center of the rolling polygon to the tracing point z, then

A = P + C + Cz. (3.4)

When z is on the circumference of the rolling disk, we have Cz = C and we
get (3.2). In the limiting case when P approaches C, this gives a known result,
A = 2C + Cz. We will deduce (3.4) as a limiting case of a more general result
concerning trochogons, or generalized cyclogons, the main topic of this section.

Here we consider a more general situation in which a curve is traced by a point
z on a regular polygonal disk with n sides rolling around another regular polygonal
disk with m sides. All edges of the two regular polygons are assumed to have the
same length. A point z attached rigidly to the n-gon traces an arch consisting
of n circular arcs before repeating the pattern periodically. We call this curve a
trochogon. It is called an epitrochogon if the n-gon rolls outside the m-gon, and a
hypotrochogon if it rolls inside the m-gon. The trochogon is curtate if z is inside
the n-gon, and prolate (with loops) if z is outside the n-gon. If z is at a vertex it
traces an epicyclogon or a hypocyclogon. Figure 3.9 shows a curtate epitrochogon
obtained by rolling a square (n = 4) outside a 24-gon (m = 24).

Area of a trochogonal arch.

The main result of this section is a simple and elegant formula for the area A of
the region between a general trochogonal arch and the fixed polygon. We call this
the area of the trochogonal arch. It is given by (3.5) in Theorem 3.3, in which Pn

denotes the area of the regular n-gon that rolls around a regular m-gon having edges
of the same length, C is the area of the disk that circumscribes the n-gon, and Cz

is the area of the concentric disk whose boundary passes through the tracing point
z.

Theorem 3.3. The area A of the trochogonal arch is given by

A = Pn + (1± n

m
)(Cz + C), (3.5)

with the plus sign for an epitrochogon and the minus sign for a hypotrochogon.

Proof. The following elementary proof of (3.5) does not use integral calculus or
Mamikon’s sweeping-tangent theorem. It is illustrated in Figure 3.9, with n = 4
and m = 24, which displays the essential features required for treating a general
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φz 

z 

Figure 3.9: A curtate epitrochogonal arch traced by a point inside a square rolling outside
a regular 24-gon.

regular n-gon rolling outside a regular m-gon. The tracing point z is inside the
square, and the arch it generates consists of four circular sectors and five triangles,
shown shaded. The lower portion of Figure 3.9 shows how the five triangular pieces
fill the square. Because of periodicity, the first and last right triangles outside the
24-gon together have the same area as the bottom triangle in the square. So A is
equal to P4, the area of the rolling square, plus the sum of the areas of the four
circular sectors.

In the general case of a regular n-gon rolling outside a regular m-gon, the tracing
point z attached to the n-gon generates an arch consisting of n circular sectors
together with a set of triangles that provide a dissection of the n-gon. So the area
A of any trochogonal arch is equal to Pn, the area of the rolling n-gon, plus the areas
of n circular sectors, the kth sector having area φr2k/2 where φ is the common angle
(in radians) subtended by each sector and r1, . . . , rn are the radii of the sectors.
Radius rk is the distance from the tracing point z to the kth vertex of the rolling
polygon. Thus, we have

A = Pn +
1

2
φ

n∑
k=1

r2k. (3.6)

It is easy to see that φ = 2π/n + 2π/m, the sum of two exterior angles, so (3.6)
becomes

A = Pn + (1 +
n

m
)
π

n

n∑
k=1

r2k. (3.7)

To evaluate the sum of squares in (3.7) we invoke (14.3) from Chapter 14, where r
is the radius of the circle circumscribing the rolling n-gon, and |z| is the distance
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from the center of the n-gon to z, and we find

π

n

n∑
k=1

r2k = π|z|2 + πr2 = Cz + C.

Use this in (3.7) to get a formula for the area of an epitrochogonal arch:

A = Pn + (1 +
n

m
)(Cz + C). (3.8)

Incidentally, if the rolling n-gon rolls inside the m-gon, the same analysis shows
that the area of a hypotrochogonal arch is

A = Pn + (1− n

m
)(Cz + C), (3.9)

so (3.8) and (3.9) can be combined to give (3.5). When m→∞ this gives (3.4).

Limiting case: epitrochoid and hypotrochoid.

Area relations for epitrochoids and hypotrochoids were obtained in Chapter 2. For
example, Theorem 2.2 implies that the area of a full trochoidal arch obtained by
rolling a disk of radius r and area C once around a fixed disk of radius R is equal to
(3 ± 2r/R)C, with the + sign for the epitrochoid and the − sign for the hypotro-
choid. This can also be deduced as a limiting case of Theorem 3.3 if we let both n
and m tend to ∞ in such a way that their ratio n/m→ r/R. This limiting case of
(3.5) also generalizes Theorem 2.2 for a complete epitrochoidal and hypotrochoidal
arch traced by a general point z of the rolling disk. In the notation of Theorem 3.1,
the polygonal area P becomes C and we obtain:

Corollary 3.1. The area A of a trochoidal arch is given by

A = C + (1± r

R
)(Cz + C), (3.10)

where the + sign is used for the epitrochoid and the − sign for the hypotrochoid.

When the tracing point z is on the boundary of the rolling disk, then Cz = C
and (3.10) reduces to A = (3± 2r/R)C, as implied by Theorem 2.2.

Dependence on the tracing point.

Each row of Figure 3.10 shows two trochogons traced by two different points z at
the same distance from the center of the rolling polygon. In Figure 3.10a, where the
rolling polygon is a 2-gon, the first arch is traced by a point z outside the 2-gon at
distance from the center equal to half the edge length of the 2-gon, and the second
is traced by a point z at a vertex. In both cases, the area Cz is the same so by (3.4)
the area A is the same. In Figure 3.10b, where the rolling polygon is an equilateral
triangle, the first trochogon is traced by a midpoint of the base of the triangle, and
the second (curtate) trochogon is traced by a point z inside the triangle at the same
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z

z zz

z
z z

(a)

(b)

(c)

Figure 3.10: In each row, the shaded regions have equal area.

distance from the center as the midpoint of the base. Consequently, Cz is the same
for both trochogons, so the areas A of the arches are also the same.

In Figure 3.10c the rolling triangle is that of Figure 3.10b. The first trochogon
is a prolate trochogon traced by a point z outside the triangle at the same distance
from the center of the triangle as a vertex. The second trochogon is traced by a
vertex. The two trochogons in this case have equal areas.

3.5 SPECIAL TROCHOGONS

Tracing point at a vertex.

Return now to (3.5) and take the tracing point z at a vertex of the rolling n-gon.
Then the areas Cz and C of the disks are equal, and (3.5) gives the area of one arch
of an epicyclogon or hypocyclogon:

A = Pn + 2(1± n

m
)C. (3.11)

In the limiting case when both n and m tend to∞ in such a way that n/m→ r/R,
we find P → C and (3.11) gives us a known result for the area of one arch of the
classical epicycloid or hypocycloid:

A = (3± 2
r

R
)C. (3.12)

A special case of (3.11) is the area for the cardiogon (Figure 3.11), which is an
epicyclogon with n/m = 1:

A = Pn + 4C. (3.13)

When n → ∞, then Pn → C, the tracing curve becomes a cardioid, and (3.13)
gives us A = 5C. This implies a classical result that the area of the region bounded

ApostolGeoChapter 3_v2.indd   11ApostolGeoChapter 3_v2.indd   11 9/27/12   2:31 PM9/27/12   2:31 PM



76 Chapter 3. CYCLOGONS AND TROCHOGONS

cardiogon n = 4 cardioid

Figure 3.11: A cardiogon traced by the vertex of an n-gon rolling outside an n-gon. The
cardiogon becomes a cardioid as n→∞.

by a cardioid is equal to 6C, because the cardioidal arch, of area 5C, together with
the inner disk of area C, fill the cardioid with area 6C.

Another special case is the nephrogon (Figure 3.12), an epicyclogon with n/m =
1/2, for which (3.11) gives

A = Pn + 3C. (3.14)

When n → ∞, (3.14) becomes A = 4C, for the area of one arch of a nephroid.
The nephroid itself encloses two such arches, each of area 4C, plus the inner disk of
area 4C, giving another proof of the known result that a nephroid encloses a region
whose area is 12C.

nephrogon n = 4 nephroid 

Figure 3.12: A nephrogon traced by the vertex of an n-gon rolling outside a 2n-gon. The
nephrogon becomes a nephroid as n→ ∞.

A related figure is the astrogon (Figure 3.13), a hypocyclogon with n/m = 1/4,
for which (3.11) yields

A = Pn +
3

2
C. (3.15)
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When n→∞, (3.15) gives A = (5/2)C for an astroid, which is a hypocycloid with

astrogon n = 3 astroid 

Figure 3.13: An astrogon traced by the vertex of an n-gon rolling inside a 4n-gon. The
astrogon becomes an astroid as n→ ∞.

four cusps (r/R = 1/4). The four arches between the hypocycloid and the outer
circle (of area 16C) have a total area of 4A = 10C, so the region inside the astroid
has area 6C, another classical result obtained without calculus.

Another special case of interest is the deltogon (Figure 3.14), a hypocyclogon
with n/m = 1/3, for which (3.11) gives

A = Pn +
4

3
C. (3.16)

deltogon n = 4 deltoid 

Figure 3.14: A deltogon traced by the vertex of an n-gon rolling inside a 3n-gon. The
deltogon becomes a deltoid as n → ∞.

When n→∞, (3.16) becomes A = (7/3)C for the deltoid, which is a hypocycloid
with three cusps (r/R = 1/3). The three arches between the deltoid and the fixed
circle have a total area of 3A = 7C, the fixed circle has area 9C, so the region inside
the deltoid has area 2C, another known result.

A somewhat suprising example is what we call a diamogon, a hypocyclogon with
n/m = 1/2. The curve is traced by a point z at a vertex of an n-gon rolling inside
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78 Chapter 3. CYCLOGONS AND TROCHOGONS

a 2n-gon. When the n-gon makes one circuit around the inside of the 2n-gon, it
traces two curves each consisting of n−1 circular arcs situated symmetrically about
a diameter of the 2n-gon. Examples with n = 3 and 4 are shown in Figure 3.15.

diamogon n = 3 diamogon n = 4

Figure 3.15: Diamogons traced by a vertex of an n-gon rolling inside a 2n-gon.

Using (3.9) we find that the area of one arch of the diamogon is A = Pn + C
because Cz = C. The two arches between the diamogon and the outer polygon have
area 2A = 2(Pn+C). In the limiting case when n→∞ this becomes 2A = 4C. But
4C is the area of the fixed circular disk, which means that the area of the region
common to the two diamogons tends to zero. In other words, when n → ∞ the
diamogon turns into a diameter of the fixed circle, traced twice.

Another geometric interpretation of Theorem 3.3.

When (3.5) of Theorem 3.3 is written in the form

A− Pn = (1± n

m
)(Cz + C)

it tells us that the difference A− Pn will be the same for all regular n-gons as long
as the right member of the equation is constant. The area C will be constant if
all the n-gons are inscribed in the same circle, the area Cz will not change if the
tracing point z is chosen at a fixed distance from the center of the rolling polygon,
and the factor multiplying (Cz + C) will not change if the ratio n/m is constant.
Figure 3.16 shows examples with n/m = 1, Cz = C, and A− Pn = 4C.

cardioid cardiogon n = 4 cardiogon n = 3 cardiogon n = 2

. . .

Figure 3.16: All lightly shaded regions have equal area.
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Tracing point not at a vertex.

Now we consider an example of a hypotrochogon traced by a point z not at a vertex
of the n-gon. We take n/m = 1/2 and call the hypotrochogon an ellipsogon because
the limiting case n → ∞ gives an ellipse. Figure 3.17 shows an example of a square
rolling inside an octagon with the tracing point z inside the square. In this case the
ellipsogon traces two arches, each consisting of four circular arcs.

ellipsogon n = 4 ellipse

Figure 3.17: An ellipsogon traced by a point inside an n-gon rolling inside a 2n-gon. The
ellipsogon becomes an ellipse as n→∞.

In the limiting case n → ∞, (3.9) shows that the area of one arch is given by
A = C + (Cz + C)/2, so the two arches fill out a region of area 2A = 3C + Cz.
The limiting configuration of the ellipsogon is an ellipse enclosing an area equal to
4C − 2A = C − Cz. If the radius of the inner circle is r and if the distance from z
to the center of the inner circle is s, then

C − Cz = π(r2 − s2) = π(r + s)(r − s).

The distances r+s and r−s are the lengths of the semiaxes a = r+s and b = r−s
of the ellipse, so we get C − Cz = πab, the usual formula for the area of an ellipse.

The point z also traces an ellipsogon if it is outside the rolling n-gon. If the
point z is inside or outside the rolling n-gon and then moves toward a vertex, the
ellipsogon becomes a diamogon which, in turn, becomes a diameter as n→∞.

3.6 ARCLENGTH OF CYCLOGONAL ARCHES

Areas of cyclogonal arches generated by regular polygons were treated in Theorems
3.1 and 3.2. We turn next to the problem of calculating arclengths. To better
appreciate the essence of the problem we treat both the area and arclength for arches
generated by a general convex n-gon, not necessarily regular. First we consider a
general convex n-gon rolling along a line with the tracing point z inside the polygon,
as illustrated by the example in Figure 3.18.
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80 Chapter 3. CYCLOGONS AND TROCHOGONS

General convex n-gon rolling along a line; tracing point inside.

The rolling quadrilateral in Figure 3.18 displays all the essential features required
for treating a general convex n-gon.

1

1

2

2

3

3

4

4

5

5

Figure 3.18: A curtate cyclogon traced by a point inside a quadrilateral rolling along a
line.

In one revolution the tracing point traces four circular arcs. The cyclogonal
region below the arcs and above the line consists of four circular sectors and a set of
triangles that form a dissection of the quadrilateral as indicated in Figure 3.18. For
a general n-gon making one revolution along a line, the tracing point z generates a
cyclogonal region consisting of n circular sectors together with a set of triangles that
provide a dissection of the n-gon. We wish to determine the area of the cyclogonal
region swept out and the length of the corresponding arch.

The area A of the region is equal to the area Pn of the rolling n-gon, plus the
sum of the areas of n circular sectors. The kth sector has area (1/2)φkr

2
k, where

r1, . . . , rn are the radii of the sectors, and φk is the angle (in radians) subtended
by the sector of radius rk. Note that rk is the distance from the tracing point z to
the kth vertex of the rolling polygon, and φk is the exterior angle of the polygon at
that vertex. Thus we have

A = Pn +
1

2

n∑
k=1

φkr
2
k. (3.17)

The length of the circular arc subtended by sector k is φkrk. The sum of the lengths
is the length L of one arch of the curtate cyclogon:

L =

n∑
k=1

φkrk. (3.18)

The sums on the right of (3.17) and (3.18) cannot be simplified until more is known
about the radii and the exterior angles. Therefore we turn next to regular rolling
polygons.

Regular n-gon rolling along a line.

When the rolling n-gon is regular, it generates a cyclogon if the tracing point is at
a vertex, a curtate cyclogon if the tracing point is inside the polygon, and a prolate
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cyclogon if it is outside. In this case each exterior angle φk is equal to 2π/n, and
the respective formulas (3.17) and (3.18) become

A = Pn +
π

n

n∑
k=1

r2k, (3.19)

and

L =
2π

n

n∑
k=1

rk. (3.20)

When the tracing point is at a vertex the sum in (3.19) can be simplified with the
help of (14.3) in Chapter 14 which, as we have already seen, leads to Theorems 3.1
and 3.2.

There is no analog of (14.3) that can be used in (3.20) to obtain a simple
arclength formula. This is not surprising because calculating arclength is usually
more difficult than calculating area. For example, the area of the region enclosed by
an ellipse can be easily determined (with or without calculus), but calculating the
arclength of a general ellipse requires elliptic integrals. We now determine (without
using calculus) the arclengths of epicyclogonal and hypocyclogonal arches when the
tracing point z is at a vertex of the rolling regular polygon.

Arclength of a cyclogon (tracing point at a vertex).

When the tracing point z is at a vertex of the regular n-gon, the trochogon is a
cyclogon, and (3.19) becomes (3.2) of Theorem 3.1. As already noted, in the limiting
case when n → ∞, Pn becomes C, the cyclogon becomes a cycloid, and (3.2) gives
us the classical result A = 3C.

Another classical result states that the length L of a cycloidal arch is 4D, where
D is the diameter of the rolling circle. The next theorem generalizes this result.

Theorem 3.4. The arclength of a cyclogonal arch traced by a vertex of a rolling
regular n-gon is given by

L = 4D (
π

2n
cot

π

2n
), (3.21)

where D is the diameter of the circle that circumscribes the n-gon.

This implies that L → 4D as n → ∞ because

lim
n→∞(

π

2n
cot

π

2n
) = 1.

The quantity
π

2n
cot

π

2n

is surprisingly close to 1, even for small values of n. For example, for n = 3, 4, 5, 6
its value to two decimals is 0.91, 0.95, 0.97, 0.98.
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Proof of Theorem 3.4. Start with (3.20) and note that rk is the distance from
the tracing point to the kth vertex of the polygon. When the tracing point is one
of the vertices, (3.20) becomes

L =
2π

n

n−1∑
k=1

rk, (3.22)

where now r1, . . . , rn−1 are the lengths of the segments from one vertex to each of
the remaining n− 1 vertices.

Figure 3.19 shows two examples, (a) a regular pentagon, and (b) a regular
hexagon. In (a) there are four segments r1, r2, r3, r4 symmetrically located about
a diameter of length D. In (b) there are five segments, one of which is a diameter,
the other four being located symmetrically about it.

θ

r r 

r r r 

r 
r 

r 

r 1 
1 

2 
2 

3 3 

4 

4 

5 

(a) (b) 

Figure 3.19: Segments drawn from one vertex of a regular polygon to the remaining
vertices.

In a general regular n-gon, each segment rk together with a diameter D deter-
mines a right triangle inscribed in a semicircle with the diameter as hypotenuse.
One of the acute angles of the right triangle is kθ = kπ/n, so

rk = D sin
kπ

n
,

and (3.22) becomes

L =
2πD

n

n−1∑
k=1

sin
kπ

n
. (3.23)

Fortunately there is a trigonometric identity that is tailor-made to evaluate the sum
of sines in (3.23). It states that for any real x not an integer multiple of π we have

n∑
k=1

sin(2kx) =
sin(n+ 1)x sinnx

sinx
. (3.24)

θ θ

θ

ApostolGeoChapter 3_v2.indd   18ApostolGeoChapter 3_v2.indd   18 9/27/12   2:31 PM9/27/12   2:31 PM



3.7. ARCLENGTH OF EPICYCLOGONS AND HYPOCYCLOGONS 83

This identity is a disguised form of an elementary formula for the sum of a geometric
progression:

n∑
k=1

zk = z
zn − 1

z − 1
,

valid for any complex z �= 1. When we take z = e2ix in this relation we get

n∑
k=1

e2ikx = e2ix
e2inx − 1

e2ix − 1
= e2ix

einx(einx − e−inx)

eix(eix − e−ix)
= ei(n+1)x sinnx

sinx
. (3.25)

Now equate imaginary parts of this last equation to obtain (3.24). When x =
π/(2n), the term with k = n in (3.24) vanishes and we find

n−1∑
k=1

sin
kπ

n
=

sin( π
2n + π

2 ) sin(
π
2 )

sin π
2n

= cot
π

2n
.

Thus we see that (3.23) becomes (3.21), which gives the arclength of every cyclogon.

If we equate real parts of (3.25) we also obtain a cosine formula:

n∑
k=1

cos(2kx) =
cos(n+ 1)x sinnx

sinx
.

Replacing cos(2kx) by 1− 2 sin2(kx) gives

2
n∑

k=1

sin2(kx) = n− cos(n+ 1)x sinnx

sinx
, (3.26)

a result we will use in Section 3.9.

3.7 ARCLENGTH OF EPICYCLOGONS AND HYPOCYCLOGONS

We turn now to the more general case of a regular n-gon rolling along a regular
m-gon, where the edges of the two polygons have equal length. The corresponding
curves traced by a vertex of the n-gon are called epicyclogons and hypocyclogons.
The next theorem reduces their arclengths to that of a cyclogon (the same n-gon
rolling on a straight line). The cyclogonal arclength is given by (3.21) and is denoted
here by Lo.

Theorem 3.5. The length L of one arch of an epicyclogon or a hypocyclogon traced
by the vertex of a regular polygon is related to the corresponding cyclogonal arclength
Lo by

L = (1± n

m
)Lo, (3.27)

where the + sign is used for the epicyclogon and the − sign for the hypocyclogon.
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Proof. The analysis used in deriving (3.20) for a polygon rolling along a line can
also be applied to this more general case. The only change is that in (3.18) the angle
φk through which the polygon rolls about the kth vertex is equal to 2π/n+ 2π/m
for the epicyclogon, and 2π/n− 2π/m for the hypocyclogon. For the length of one
arch we have, instead of (3.20), the relation

L = (
2π

n
± 2π

m
)

n∑
k=1

rk , (3.28)

where the plus sign is used for the epicyclogon and the minus sign for the hypocycl-
ogon. Once again we have rk = D sin(kπ/n), where D is the diameter of the circle
that circumscribes the rolling polygon, and instead of (3.21) we obtain (3.27) of
Theorem 3.5. As expected, (3.21) is the limiting case of (3.27) when m→∞.

We can obtain the limiting case of a circle of radius r rolling around a fixed circle
of radius R if we let both n and m tend to infinity in such a way that their ratio
n/m→ r/R. Then the limiting value of (3.27) gives the lengths of the corresponding
epicycloid and hypocycloid. If we note that the diameter D of the rolling circle is
2r, we find the limiting value of the arclength is

L = 4D(1± D

2R
) = 8r(1± r

R
).

3.8 SOME SPECIAL TROCHOGONS

Some classic trochoids have names suggested by their shapes, for example, cardioid,
nephroid, astroid, and deltoid. We have given similar names to the trochogons
having these trochoids as limits. For example, a cardiogon is generated by a regular
n-gon rolling around a fixed copy of itself. Figure 3.20 shows an example with n =
6. As n→ ∞ the cardiogon becomes a cardioid.

1

1

2

2

3

3

4
4

Figure 3.20: A cardiogon generated by a regular hexagon rolling around a copy of itself.

Table 1 gives the areas of one arch of a few special trochogons as derived from
(3.11), together with known classical results for the corresponding trochoids. The
trochoidal arclengths are also listed. We recall that Pn is the area of the rolling
regular n-gon, C is the area of the circumscribing circle, and D is its diameter.
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Trochogon Factor 1±n/m Area Trochoid Area Arclength
cyclogon 1+n/∞ = 1 Pn + 2C cycloid 3C 4D
cardiogon 1 + n/m = 2 Pn + 4C cardioid 5C 8D
nephrogon 1+n/m = 3/2 Pn + 3C nephroid 4C 6D
astrogon 1−n/m = 3/4 Pn + 3C/2 astroid 5C/2 3D
deltogon 1−n/m = 2/3 Pn + 4C/3 deltoid 7C/3 8D/3
diamogon 1−n/m = 1/2 Pn + C diameter 2C 2D

Table 1. Areas of one arch of some special trochogons, and areas and arclengths
for the corresponding trochoids. Arclengths of trochogons are given by (3.27).

The last entry may seem somewhat surprising. What we call a diamogon is a
hypocyclogon with n/m = 1/2. The curve is traced by a point z at a vertex of an
n-gon rolling inside a 2n-gon. When the n-gon makes one circuit around the inside
of the 2n-gon, it traces out two curves, each consisting of n−1 circular arcs situated
symmetrically about a diameter of the 2n-gon. Using (3.27) we find that the length
Ldiam of one arch of the diamogon is

Ldiam = 2D(
π

2n
cot

π

2n
).

When n→∞ this tends to 2D, the diameter of the fixed circle. This is consistent
with the fact that when n→∞ one arch of the diamogon turns into a diameter of
the fixed circle. The region between the arch and the fixed circle is a semicircular
disk of area 2C, half the area of the fixed circle.

The history of many classic curves can be found on the web site

http://www-groups.dcs.st-andrews.ac.uk/history/Curves,

where one can also see animation related to these curves. Another rich source is
Yates [70], which also contains formulas for areas and arclengths.

3.9 INCOMPLETE TROCHOGONS

In Chapter 2 we found cycloidal area relations when the rolling disk makes an
incomplete rotation along a line or, more generally, around a circular disk. This
section finds corresponding area and arclength formulas for incomplete trochogons
traced by a vertex of a rolling polygon that makes an incomplete rotation along a
line or a polygon.

Incomplete cyclogons.

Start with a cyclogon traced by a vertex of regular n-gon rolling a line, as in Section
3.6, but rotate the polygon through only the first p of its n edges, where p ≤ n.
Then the formulas for area Ap

o and arclength Lp
o replacing (3.19) and (3.20) are

Ap
o = P p

n +
π

n

p∑
k=1

r2k,
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86 Chapter 3. CYCLOGONS AND TROCHOGONS

Lp
o =

2π

n

p∑
k=1

rk,

where the superscript p reminds us that the polygon has rolled through p edges,
and the subscript o reminds us that the polygon rolls along a line. Area P p

n is that
of a segment of the rolling n-gon consisting of adjacent triangular footprints like
those in Figure 3.6. As before,

rk = D sin
kπ

n
,

where D is the diameter of the circle that circumscribes the rolling n-gon. For this
value of rk, the area and arclength formulas become

Ap
o = P p

n +
πD2

n

p∑
k=1

sin2
kπ

n
, (3.29)

Lp
o =

2πD

n

p∑
k=1

sin
kπ

n
. (3.30)

Using (3.26) with n = p to evaluate (3.29), we find:

Theorem 3.6. The area of a cyclogonal sector is given by

Ap
o = P p

n +
πD2

2n
[p− sin pπ

n

sin π
n

cos(p+ 1)
π

n
]. (3.31)

Similarly, using (3.24) with n = p to evaluate (3.30), we obtain:

Theorem 3.7. The arclength of an incomplete cyclogon is given by

Lp
o =

2πD

n

sin pπ
2n

sin π
2n

sin(p+ 1)
π

2n
. (3.32)

Let ω = 2πp/n. This is the angle swept by the radius of the rolling polygonal
disk when it rolls through p of its edges. In terms of ω, (3.31) and (3.32) become

Ap
o = P p

n +
D2

4
ω − D2

2

π
n

sin π
n

sin
ω

2
cos(

ω

2
+

π

n
), (3.33)

Lp
o = 4D

π

2n

1

sin π
2n

sin
ω

4
sin(

ω

4
+

π

2n
). (3.34)

Now let n and p tend to ∞ in such a way that the ratio p/n maintains the
constant value ω/(2π). Denote the limiting values of Ap

o and Lp
o by Aω

o and Lω
o . It

is easily seen that P p
n → Cω where Cω is the area of a circular segment, so from

(3.33) we find the limiting value

Aω
o = Cω +

D2

4
(ω − sinω). (3.35)
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From (2.6) in Chapter 2 we recall that

Cω =
D2

8
(ω − sinω),

hence (3.35) becomes

Aω
o =

3D2

8
(ω − sinω) = 3Cω. (3.36)

This gives a new proof of Theorem 2.1, and (3.36) reduces to (3.1) when ω = 2π.

For arclength, the limiting value of (3.34) gives us

Lω
o = 4D sin2

ω

4
= 2D(1− cos

ω

2
), (3.37)

a result that will be obtained in a different manner in Chapter 11, (11.16).

Incomplete epicyclogons and hypocyclogons.

Corresponding formulas can be obtained for areas Ap and arclengths Lp of incom-
plete epicyclogons and hypocyclogons. When a regular n-gon rolls along a regular
m-gon, with the edges of the two polygons having equal length, we obtain the
following result for area:

Theorem 3.8. The area of an epicyclogonal or hypocylogonal sector is related to
the area of the corresponding cyclogonal sector by

Ap − P p
n = (1± n

m
)(Ap

o − P p
n). (3.38)

When we add Ap − P p
n for the epicyclogonal and hypocyclogonal sectors, the

plus and minus terms cancel in (3.38) and we find:

Corollary 3.2. The sum of differences Ap−P p
n for the epicyclogonal and hypocycl-

ogonal sectors is 2(Ap
o −P p

n), twice the corresponding result for a cyclogonal sector.

For arclength we have the following companion results:

Theorem 3.9. The arclength of an incomplete epicyclogon or hypocyclogon is re-
lated to that of the corresponding cyclogon as follows:

Lp = (1± n

m
)Lp

o. (3.39)

Corollary 3.3. The sum of the epicyclogonal and hypocyclogonal arclengths is 2Lp
o.

Corollaries 3.2 and 3.3 will be extended in Section 3.14. When n, m tend to ∞
in such a way that n/m→ r/R, Theorem 3.8 gives

Aω − Cω = (1± r

R
)(Aω

o − Cω), (3.40)

which implies Theorem 2.2. For arclength, Theorem 3.9 yields the corresponding
result

Lω = (1± r

R
)Lω

o , (3.41)

which will be obtained differently in Chapter 11, (11.17).
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88 Chapter 3. CYCLOGONS AND TROCHOGONS

3.10 ARCLENGTH AND AREA OF INVOLUTOGONS

When a taut inelastic string is unwrapped from a point on a given curve, its free
end traces a curve called the involute of the given curve. Involutes are treated in
Chapter 11, but here we introduce the concept of involutogon, a curve traced by a
point on a straight line that rolls around a fixed polygon. This can be regarded as
the limiting case of an epicyclogon when the number of sides of the rolling polygonal
disk tends to infinity.

This section treats the simplest case, in which the polygon is a regular m-gon,
illustrated in Figure 3.21 with m = 8. Here, the moving line (the limiting case of
a rolling polygon) is initially along the upper edge of the 8-gon, and the tracing
point is initially at a vertex. This can be realized physically by a taut inelastic
string unwrapped from the 8-gon. The free end of the string traces an involutogon.
Figure 3.21 shows a portion of the involutogon composed of four circular arcs.

r

rk

1 r
2

m-gon
ϕm

Figure 3.21: An involutogon traced by a point rolling around a regular 8-gon.

We allow the string to turn through p edges of a general regular m-gon and
obtain formulas for the arclength Lp traced by the vertex, and for the area Ap

of the region swept by the string. If each edge of the m-gon has length a, the
involutogon consists of circular arcs of radii a, 2a, 3a, ..., pa, each arc subtending the
same angle ϕm at each vertex. The length of the kth arc is kaϕm and the area of
the corresponding circular sector is (ka)2ϕm/2. Consequently, we have

Lp = aϕm

p∑
k=1

k = aϕm
p(p+ 1)

2
, (3.42)

and

Ap =
1

2
a2ϕm

p∑
k=1

k2 =
1

2
a2ϕm(

p3

3
+

p2

2
+

p

6
). (3.43)

We can also express these formulas in terms of the radius R of the circle that
circumscribes the m-gon. We have a = 2R sin(π/m) and ϕm = 2π/m, so (3.42) and
(3.43) become

Lp = p(p+ 1)(
π

m
sin

π

m
)(2R), (3.44)
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and

Ap = (
p3

3
+

p2

2
+

p

6
)(

π

m
sin2

π

m
)(4R2). (3.45)

In the limiting case, when m → ∞, the involutogon becomes the involute of
a circle of radius R. Let α = 2πp/m, the central angular portion of the m-gon
unwrapped by the string. If the ratio p/m is kept constant as m and p become
infinite, then from (3.44) and (3.45) we find that Lp → L(α) and Ap → A(α),
where

L(α) =
1

2
Rα2, (3.46)

and

A(α) =
1

6
R2α3. (3.47)

These results will be obtained in another way in Chapter 11.

3.11 AREA AND ARCLENGTH OF AUTOGONS

We return to an arbitrary n-gon (not necessarily regular) that rolls around a mir-
ror image of itself, so that in one revolution each edge is made to coincide with a
congruent edge. A point z rigidly attached to the rolling n-gon traces a curve we
call an autogon. Figure 3.20 shows an autogon traced by the vertex of a regular
hexagon. Figure 3.22 shows an autogon traced by the point z inside the nonreg-
ular quadrilateral that appears in Figure 3.18. (This is an example of a curtate
epitrochogon.)

O

z

Figure 3.22: An autogon generated by the quadrilateral in Figure 3.18 rolling around a
fixed copy of itself. The point O is the mirror image of the tracing point z.

For a general autogon the turning angle at each vertex is twice that of the exterior
angle φk that appears in rolling along a line. Therefore the general formulas for
area and arclength given in (3.17) and (3.18) become

Aa = P +
n∑

k=1

φkr
2
k, (3.48)
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90 Chapter 3. CYCLOGONS AND TROCHOGONS

and

La = 2

n∑
k=1

φkrk, (3.49)

where the subscripts on the symbols A and L indicate that we are considering au-
togons. Although there is no general formula for simplifying the sums in (3.48) and
(3.49), we can compare the area and arclength of an autogon with the correspond-
ing cyclogonal area A and arclength L as given in (3.17) and (3.18). Comparing
(3.48) with (3.17) we see that Aa−P = 2(A−P ), so Aa +P = 2A. The geometric
meaning of this is illustrated in Figure 3.22. The autogon consists of one closed arch
surrounding the fixed polygon, so the entire area enclosed inside the autogon, A+P ,
is twice the area of the corresponding cyclogon. Comparing (3.49) with (3.18) we
see that La = 2L, so the arclength of an autogon is twice that of the corresponding
cyclogon. Thus we have discovered the following comparison theorems.

Theorem 3.10. The area of the region inside an autogon is twice that of the cor-
responding cyclogonal arch obtained by rolling the polygon along a line.

Theorem 3.11. The arclength of an autogon is twice that of the corresponding
cyclogonal arch obtained by rolling the polygon along a line.

Both theorems are valid for any location of the tracing point z. They can be
visualized geometrically by comparing the autogon in Figure 3.22 with the tro-
chogon in Figure 3.18. Both are traced by the same point z inside the same rolling
quadrilateral. Each circular sector in Figure 3.22 subtends twice the angle of the
corresponding sector in Figure 3.18 but has the same radius, hence twice the area
and twice the arclength. The polygonal region surrounded by the sectors in Figure
3.22 contains the quadrilateral plus the four triangles that provide a dissection of
the quadrilateral, so this polygonal region has area twice that of the quadrilateral.

Incomplete autogons.

For incomplete autogons, we simply alter (3.48) and (3.49) by replacing the upper
limit n of summation by p. The argument used to prove Theorems 3.10 and 3.11
gives the same type of results for incomplete autogons. Now an incomplete autog-
onal sector includes the corresponding sector of the fixed polygon. All the sectors
have a common vertex at the mirror image O of the tracing point z, as illustrated
in Figure 3.22.

Theorem 3.12. The area of an autogonal sector is twice that of the corresponding
cyclogonal sector obtained by rolling the polygon along a line.

Theorem 3.13. The arclength of an incomplete autogon is twice that of the corre-
sponding cyclogonal arc obtained by rolling the polygon along a line.

As limiting cases of these theorems we obtain the following corollaries for an
autotrochoid, a trochoid obtained by rolling a smooth curve along a fixed mirror
image of itself.
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3.12. ELLIPTIC, HYPERBOLIC, AND PARABOLIC CATENARIES 91

Corollary 3.4. The area of an autotrochoidal sector of a smooth curve is twice
that of the corresponding sector obtained by rolling the curve along a line.

Corollary 3.5. The length of an incomplete autotrochoidal arc of a smooth curve
is twice that of the corresponding arc obtained by rolling the curve along a line.

For example, a point rigidly attached to a circular disk traces a autotrochoid
(curtate, prolate, or a cardioid) when the disk rolls around an equal disk, and a cy-
cloidal curve (curtate, prolate, or ordinary cycloid) if it rolls along a line. Corollary
3.4 tells us that the area of the autotrochoidal sector is twice that of the correspond-
ing cycloidal sector. Corollary 3.5 tells us that the length of an autotrochoidal arc
is twice that of the corresponding cycloidal arc. In particular, the results are valid
for full arches. Applications of the corollaries appear in the next two sections.

3.12 ELLIPTIC, HYPERBOLIC, AND PARABOLIC CATENARIES

Elliptic catenary.

Figure 3.23a shows an ellipse rolling along a line. The cycloidal curve traced by one
focus F1 is called an elliptic catenary. An elliptic catenary consists of periodically
repeating arches, each corresponding to one complete revolution of the ellipse. We
wish to determine the arclength s and the area of the ordinate set shown in Figure
3.24a. To do this we roll the ellipse along a fixed copy of itself, through the same
length of elliptical arc, as in Figure 3.23b, and apply Corollaries 3.4 and 3.5. In this
case the focus traces an autotrochoid that is a circle whose radius R is the length
of the major axis of the ellipse.

F1

F2

F1

F2 fixed
k k

k

F1

O

(b)(a)

elliptic
catenary

ellipse

circle

s

A

Figure 3.23: (a) When an ellipse rolls along a line, the focus F1 traces an elliptic catenary.
(b) When the ellipse rolls around a fixed copy of itself, the focus F1 traces a circular arc
whose radius R is the length of the major axis.

According to Corollary 3.4, the area of the region bounded by one full arch of
the elliptic catenary is half that of the circle of radius R in Figure 3.23b, or πR2/2.
And by Corollary 3.5, the arclength of the elliptic catenary is half the circumference
of the circle, or πR. More generally, the corollaries tell us that when the ellipse in
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92 Chapter 3. CYCLOGONS AND TROCHOGONS

Figure 3.23b rolls part way around the fixed ellipse, and when the ellipse rolls along
a line through the same length of elliptical arc, then the corresponding area A
(shaded in Figure 3.23a) is half that of the shaded portion of the circular sector in
Figure 3.23b. And the arclength s of the elliptic catenary in Figure 3.23a is half that
of the circular arc in Figure 3.23b. The area of the shaded portion of the circular
sector in Figure 3.23b is easily calculated. It is the area of the circular sector minus
the area of a triangle with edges r, R− r, R− 2k.

F1

F kk

k

s

1

rr

r

2s
α α

ordinate set O

R

(a) (b)

ϕ

Figure 3.24: Close-up view of Figure 3.23. The area of the ordinate set under the elliptic
catenary in (a) is half that of the shaded region in (b).

Figure 3.24, a close-up view of Figure 3.23, shows how to find the area of the
ordinate set under the elliptic catenary. The right triangles with hypotenuse r and
adjacent angle α are congruent. Consequently, the area of the ordinate set is half
the area of the shaded region in Figure 3.24b.

Hyperbolic catenary.

The same problems can be solved for a hyperbola. Figure 3.25a shows one branch
of a hyperbola rolling along a line. The focus F1 enclosed by that branch traces a
curve called a hyperbolic catenary.

Unlike the ellipse, which can make a complete revolution, the hyperbola can roll
through an angle no greater than γ, half the angle between its asymptotes, which
is related to the eccentricity e of the hyperbola by cos γ = 1/e (see Figure 7.9).
Therefore a hyperbolic catenary is a symmetric arc of limited extent.

Figure 3.25b shows the same hyperbola rolling along a fixed copy of itself, with
focus F1 tracing a circular arc whose radius R is the length of the major axis of the
hyperbola.

The same argument used for the elliptic catenary shows that when the hyperbola
in Figure 3.22b rolls part way around the fixed hyperbola, and when the hyperbola
rolls along a line through the same length of hyperbolic arc, then the corresponding
area (shaded in Figure 3.25a) is half that of the shaded region outside of the circular
sector in Figure 3.25b. And the arclength s of the hyperbolic catenary in Figure
3.25a is half that of the circular arc in Figure 3.25b. The area of the shaded region
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kk

r
rF F11

rolling hyperbola

fixed hyperbola
R

s

2sk
r F2

O

α
ϕ

α

rolling hyperbola

locus of focus

(a) (b)

Figure 3.25: (a) When a hyperbola rolls along a line, the focus F1 traces a hyperbolic
catenary. (b) When the hyperbola rolls along a fixed copy of itself, the focus F1 traces a
circular arc whose radius R is the length of the major axis.

in Figure 3.25b is the area of the triangle with edges r,R+ r,R+2k minus the area
of the circular sector of radius R.

Parabolic catenary.

We also consider the same problems for a parabola. Figure 3.26a shows a parabola
rolling around a line. Its focus F traces a symmetric curve of infinite extent called
a parabolic catenary. When the same parabola rolls along a fixed copy of itself, its
focus traces the directrix of the fixed parabola. When the parabola rolls along the
line through the same length as the parabolic arc, then the corresponding area A
(shaded in Figure 3.26a) is half that of the trapezoid shown in Figure 3.26b.

(b)(a)

k

k
k

α

catenary

fixed parabola

rolling parabola

s

A

F

F

O

parabolic

Figure 3.26: (a) A parabola rolling around a fixed copy of itself. The focus F traces the
directrix of the fixed parabola. (b) When the same parabola rolls along a line, the focus
F traces a parabolic catenary.
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94 Chapter 3. CYCLOGONS AND TROCHOGONS

Explicit formulas.

Figure 3.27, a close-up view of Figure 3.26, shows how to find the area of the
ordinate set under the parabolic catenary. The right triangles with hypotenuse r
and adjacent angle α are congruent. Consequently, the area of the ordinate set
is half the area of the shaded right triangle in Figure 3.27b. That right triangle
has area 2ks where s is the arclength of the parabolic catenary, so the area of the

ordinate set
(a) (b)

s

k
k

k

r
r

2s

F

F

r

α

α

α

O

Figure 3.27: Close-up view of Figure 3.26. The area of the ordinate set under the parabolic
catenary in (a) is half that of the trapezoid in (b).

ordinate set of the parabolic catenary is given by

Area of ordinate set = ks. (3.50)

From the right triangle in Figure 3.24b se see that

s = k tanα. (3.51)

As indicated in the diagrams, k denotes the distance from the focus to the vertex
of the conic.

In Chapter 11, (11.24), we find that (3.51) gives the natural equation of an
ordinary catenary, which is well known as the shape of a uniform flexible chain
that hangs under its own weight. Thus, the parabolic catenary is the same as the
ordinary catenary. As a consequence of our results concerning autotrochoids we
have calculated, in a completely elementary way, both the arclength s and the area
of the ordinate set of a catenary. The same results will be obtained by a different
method in Chapter 11.

Corresponding results for the arclength and area of the ordinate set of an elliptic
catenary in Figure 3.24a can also be obtained in an elementary way as shown above.
The arclength s = Rϕ/2, half that of the circular arc shown in Figure 3.24b. The
angle ϕ can be determined by applying the law of sines to the triangle with two
edges of lengths r and R− 2k. The angle opposite that of edge length R− 2k is 2α,
hence (R− 2k) sinϕ = r sin 2α, which gives

s =
1

2
Rϕ =

1

2
R arcsin(

r sin 2α

R− 2k
). (3.52)
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As R → ∞, ϕ → 0, the ellipse becomes a parabola, and it is easily shown that
the limiting value of s in (3.52) is k tanα, in agreement with (3.51).

As already noted, the area of the ordinate set in Figure 3.24a is half the area
(that we call S) of the shaded region in Figure 3.24b. The area S, in turn, is the
area R2ϕ/2 of the circular sector subtended by ϕ, minus the area (that we call T )
of the triangle with base angle ϕ and adjacent edges R and R− 2k. The altitude of
the triangle is r sin 2α, measured from O to the side of length R, so T = 1

2rR sin 2α.
Hence the area of the ordinate set in Figure 3.24a is given by 1

2 (S − T ). This can
be written as

Area of ordinate set = ks+
1

4
R(R− 2k)(ϕ− sinϕ).

An alternative form is

Area of ordinate set =
1

2
kR sinϕ+

1

4
R2(ϕ− sinϕ). (3.53)

It is easily shown that as R → ∞ and ϕ → 0 in such a way that Rϕ/2 = s, the
ellipse becomes a parabola, and the limiting value of (3.53) is ks, in agreement with
(11.25), which gives the area of the ordinate set of an ordinary catenary.

For a hyperbolic catenary, it is easily shown that the formulas corresponding to
(3.52) and (3.53) are, respectively,

s =
1

2
Rϕ =

1

2
R arcsin(

r sin 2α

R+ 2k
),

Area of ordinate set =
1

2
kR sinϕ− 1

4
R2(ϕ− sinϕ).

To the best of our knowledge, the area of the ordinate set of an elliptic or hyperbolic
catenary has not been previously treated, except for the full area in the elliptic case.
It should be noted that these elementary formulas are expressed in terms of the angle
of rotation.

3.13 PEDAL CURVES AND STEINER’S THEOREMS

Some roulettes are pedal curves, which are defined as follows. Given a smooth plane
curve Γ and a point z not on Γ called a pedal point, let p denote the foot of the
perpendicular from z to a typical tangent line to Γ. The locus of all such points
p constructed for all tangent lines to Γ is called the pedal curve of Γ with respect
to z. In Section 1.15 we introduced the limaçon of Pascal as the pedal curve of a
circle. In particular, if the pedal point is on the circle, the limaçon is a cardioid.

The 19th century geometer Jakob Steiner discovered a remarkable property re-
lating the area of a roulette with that of its pedal curve, and another relating their
arclengths.

Theorem 3.14. (Steiner’s first theorem) When a smooth closed curve Γ rolls along
a straight line, the area of the region between one full arch of the roulette traced by
a point z attached to Γ and the straight line is twice the area of the region enclosed
by the pedal curve of Γ with z as pedal point.
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96 Chapter 3. CYCLOGONS AND TROCHOGONS

Theorem 3.15. (Steiner’s second theorem) The length of an arc of the roulette is
equal to the arclength of the pedal curve.

We will deduce Steiner’s theorems from Corollaries 3.4 and 3.5. But first we
obtain comparison results relating areas and arclengths of autogons with those of
their pedal curves.

Autogons and pedal curves.

Because a polygon has only a finite number of tangent lines (one for each edge) the
usual definition of pedal curve would produce only a finite set of points as the pedal
curve. Hence we need to extend the concept of pedal curve so that it applies to
polygons. The problem is to introduce a suitable replacement for a tangent line at
a vertex of a polygon. We do this as follows.

Each vertex v of a polygon is the intersection of two consecutive edges. From
a given pedal point z inside or outside the polygon, perpendiculars to the edges
intersect the polygon at points p and q, say. In Figure 3.28a, z is inside.

(a)

(b) (c) 

p

q

z

Figure 3.28: The pedal curve of a quadrilateral with a pedal point z inside.

Imagine rotating a line through one edge about this vertex through the exterior
angle at that vertex until it reaches the line of an adjacent edge. Each intermediate
position of the rotating line can play the role of a tangent line, and a perpendicular
can be drawn from the pedal point z to each such line. The locus of the feet of
the perpendiculars will lie on a circle (passing through the common vertex) whose
diameter d is the distance from z to that vertex. The circular arc joining p and q
is, by definition, the portion of the pedal curve contributed by that vertex. So the
pedal curve of an n-gon consists of n circular arcs, one for each vertex. The diameter
of each arc is the distance from the pedal point to the corresponding vertex. The
pedal curve of the quadrilateral in Figure 3.28b consists of four circular arcs. For a
convex polygon, no point of the pedal curve lies inside the polygon.
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Now take an arbitrary n-gon and roll it around its fixed mirror image so that
in one revolution each edge is made to coincide with a congruent edge. A point
z rigidly attached to the rolling n-gon traces an autogon. The pedal curve to this
autogon with pedal point z will be a scaled copy of the autogon with a scaling factor
of 1/2. This fact is known for smooth curves but it holds for arbitrary n-gons as
well. The reason is that each point on the pedal curve is the foot of a perpendicular
from the pedal point z and therefore must be at the midpoint of the extended
perpendicular that joins z to its mirror image. Consequently, we have the following
comparison results, not only for complete autogons and their pedal curves, but for
incomplete autogonal sectors as well. They can be regarded as companion results
to Corollaries 3.4 and 3.5:

Theorem 3.16. The area of an autogonal sector traced by z is four times that of
the corresponding sector of the pedal curve having pedal point z.

Theorem 3.17. The arclength of an autogonal arc traced by z is twice that of the
corresponding portion of the pedal curve having pedal point z.

These can be visualized geometrically by comparing the shaded regions inside
the pedal curve in Figure 3.28c with the autogon in Figure 3.22. The same point z
traces the autogon in Figure 3.22 and is the pedal point in Figure 3.28. Each circular
sector swept out by z in Figure 3.22 subtends the same angle as in Figure 3.28b
but has twice the radius. So the area of the sector in Figure 3.22 is four times that
in Figure 3.28c, and its arclength is twice that in Figure 3.28c. And the polygonal
region surrounded by the circular sectors in Figure 3.22 has linear dimensions twice
those in Figure 3.28c, so its area is four times as large. In particular, we have the
following examples:

1. The area of a sector inside a limaçon of Pascal (or a cardioid) is twice that of
the corresponding curtate or prolate cycloidal sector (or cycloidal sector) obtained
by rolling the same disk along a line.

2. The length of an arc of the limaçon of Pascal (or a cardioid) is twice that
of the corresponding curtate or prolate cycloidal arc (or cycloid) obtained by rolling
the same disk along a line.

These results for the area of a full limaçon of Pascal and for the length of an
arbitrary arc were known to Steiner.

New proofs of Steiner’s theorems.

Now we use Theorems 3.16 and 3.17 together with Corollaries 3.4 and 3.5 to deduce
Steiner’s theorems for smooth curves. By Corollary 3.4, the area of a cyclogonal
arch traced by a point z attached to an n-gon rolling along a straight line is half
that of the corresponding autogon, hence, by Theorem 3.16, it is twice that of the
pedal curve of the n-gon with pedal point z. This implies Steiner’s first theorem
for any smooth curve that is the limit of n-gons. Steiner’s second theorem follows
similarly from Corollary 3.5 and Theorem 3.17.
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98 Chapter 3. CYCLOGONS AND TROCHOGONS

3.14 REDUCTION FORMULAS FOR ARCLENGTHS AND AREAS

This section exploits the fact that some arclength and area calculations for tro-
chogonal curves can be reduced to those of cyclogons generated by the same rolling
polygon.

Curves traced by a point attached to a rolling regular polygon.

When a regular n-gon rolls along a line through p of its edges, where p ≤ n, a
vertex of the n-gon traces an incomplete cyclogon of arclength Lp

o. When the same
n-gon rolls through p of its edges along a regular m-gon, with the edges of the two
polygons having equal lengths, the same vertex traces an incomplete epicyclogon
or hypocyclogon of arclength Lp. Theorem 3.9 reduces the arclength Lp to the
cyclogonal arclength Lp

o by the simple relation

Lp = (1± n

m
)Lp

o, (3.54)

with the + sign for the epicyclogon and the − sign for the hypocyclogon.

The same type of reduction holds for prolate or curtate epicyclogons or hypocy-
logons traced by a point z attached to the rolling n-gon. This is easily seen by
replacing (3.28) by the more general formula

Lp(z) = (
2π

n
± 2π

m
)

p∑
k=1

rk = (1± n

m
)(
2π

n

p∑
k=1

rk), (3.55)

where we have written Lp(z) to indicate dependence on z (because now rk depends
on z). The last factor in (3.55) represents the length Lp

o(z) of the cyclogonal curve
traced by the same point z when the n-gon rolls along a line. Thus reduction
formula (3.55) becomes

Lp(z) = (1± n

m
)Lp

o(z), (3.56)

which has the same form as the special case in (3.54) when z is a vertex. In
general, there is no direct way to determine either arclength Lp(z) or Lp

o(z), but
the reduction formula establishes a simple relation between them.

The same analysis shows that the corresponding reduction formula for areas
in Theorem 3.8 can be generalized when the tracing point is an arbitrary point z
attached to the rolling n-gon. In this case we have an extension of (3.38):

Ap(z)− P p
n(z) = (1± n

m
)(Ap

o(z)− P p
n(z)), (3.57)

where P p
n(z) is the area of the accumulated triangular footprints of the rolling n-gon

like those in Figure 3.18.
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Sum of arclengths and areas of complementary trochogonal curves.

For an epicycloid obtained by a disk of radius r rolling outside a fixed circle of radius
R, there is a corresponding hypocycloid obtained by a disk of the same radius r
rolling inside. In Chapter 2 we called such curves complementary and observed that
the sum of the areas of complementary arches is six times the area of the rolling
disk, which is twice the area of the cycloidal arch traced by the same disk rolling on
a line. (Recall Corollary 2.3 and Figure 2.13.) This fact is remarkable because it
does not depend on the radius R of the fixed circle. Theorem 2.7 extended this to
complementary epitrochoidal and hypotrochoidal curves obtained by rolling a disk
on opposite sides of a general base curve Γ. The sum of the areas of an epitrochoidal
sector and its complementary hypotrochoidal sector does not depend on Γ and is
twice the area of the corresponding cycloidal sector. In Chapter 11, Section 11.5,
it is shown that a similar relation holds for arclengths, their sum being twice that
of the corresponding cycloidal arclength. Therefore it is not surprising that similar
relations hold for complementary trochogonal curves traced by not only the vertex
of a regular polygon but also by a point z attached to a general convex rolling
polygon, not necessarily regular.

The reason for this is easily explained by comparing Figures 3.29a and b. Figure
3.29a shows a polygon and its mirror image rolling on opposite sides of a straight
line Γ0. A vertex V and its mirror image V ′ trace complementary circular arcs with
equal central angles φ at the pivot vertex.

V

V'

Γ

Γ

+

−

z

z'

V

V'

Γ

Γ φ

φ

z

z'
0

0

(a) (b)

Figure 3.29: The two central angles in (a) have the same sum as those in (b).

In Figure 3.29b, Γ0 is replaced by a polygonal track Γ which is a broken version of
the rolling polygon’s boundary, configured so that the polygon and its mirror image
can roll along opposite sides of Γ. The angles between edges of Γ are arbitrary. Now
vertex V and its mirror image V ′ trace complementary circular arcs with central
angles φ+ and φ− at the pivot vertex. They are not equal if there is a bend in the
track, but at each pivot vertex their sum is given by φ+ + φ− = 2φ, where φ is the
corresponding turning angle in Figure 3.29a.

Consequently, the sum of the arclengths of the complementary circular arcs
accumulated as the polygon rolls along any number of edges does not depend on

φ

φ

ApostolGeoChapter 3_v2.indd   35ApostolGeoChapter 3_v2.indd   35 9/27/12   2:31 PM9/27/12   2:31 PM



100 Chapter 3. CYCLOGONS AND TROCHOGONS

how Γ bends from vertex to vertex, and it is twice the arclength accumulated when
the polygon rolls on Γ0 along the same number of edges. And the same is true for
the sum of areas of the complementary trochogonal arches accumulated during an
incomplete rotation, whether or not the triangular footprints of the rolling polygon
are included.

A similar analysis reveals that the same properties hold for arclengths and areas
of complementary trochogons traced by a point z and its mirror image z′.

The foregoing claims are summarized in the following two theorems, in which the
tracing point z is attached to an arbitrary convex polygon that rolls along a polyg-
onal track Γ as described above. Point z and its mirror image trace complementary
trochogonal arcs.

Theorem 3.18. The sum of lengths of the complementary arcs is independent of
Γ and is twice the length of the arc obtained when the polygon rolls along a line.

Theorem 3.19. The sum of areas of the complementary trochogonal sectors (with
or without footprints) is independent of Γ and is twice the area of the corresponding
sector obtained when the polygon rolls along a line.

As limiting cases of these theorems we obtain the following corollaries for com-
plementary trochoids obtained when a smooth curve and its mirror image roll on
opposite sides of a curve Γ.

Corollary 3.6. The sum of arclengths of complementary trochoids is independent
of Γ and is twice the arclength of the trochoid obtained when Γ is a straight line.

Corollary 3.7. The sum of areas of complementary trochoidal sectors is indepen-
dent of Γ and is twice the area of the corresponding sector obtained when Γ is a
straight line.

The results for autogons in Theorems 3.12 and 3.13 and for autotrochoids in
Corollaries 3.4 and 3.5 can be regarded as special cases.

NOTES ON CHAPTER 3

This chapter is adapted from material published in [5], [9], and [12]. Sections 3.9
and 3.14, which deal with areas and arclengths of incomplete trochogonal arches,
have not been previously published. The same is true of Section 3.12 on elliptic,
hyperbolic, and parabolic catenaries, and of Section 3.10, which deals with involuto-
gons. The limiting cases in Section 3.9, when the polygonal disks become circular,
are treated differently in Chapter 2 for areas, and in Chapter 11 for arclength.
Also, the results of Section 3.10 for the limiting case of an involutogon are obtained
differently in Chapter 11.

Animation showing the generation of elliptic, hyperbolic, and parabolic cate-
naries, together with mechanisms for tracing these curves, can be seen on the web
site

www.mathcurve.com/courbes2d/delaunay/delaunay.shtml
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Chapter 4

CIRCUMGONS AND
CIRCUMSOLIDS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

When a cylindrical glass full of water (a) is tipped as in (b), exactly half the
volume of water remains in the glass. In (c), the glass is tipped further so that the
surface of the water bisects the circular base.

Calculate the fraction of the volume of water that remains in the glass if angle
δ = 30◦ in (c).

δ

(a) (b) (c)

Now the glass has the shape of the frustum of a cone as shown below. It is
initially full of water in (a), and is tipped in (b) so that the horizontal level of the
water first touches the circular base. In (c) it is tipped further so that the water level
bisects the circular base. The shape of the glass is determined by (c), where one
slanted edge is vertical, and the two marked vertical segments have equal lengths.

What fraction of the full volume remains in the glass in configuration (b) and
in configuration (c)?

(a) (b) (c)

101
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4
Every triangle circumscribes a circle called the incircle, whose radius is

called the inradius and whose center is called the incenter. A polygon with
more than three edges may or may not circumscribe a circle. Those that do are
examples of what we call circumgons. Each has an inradius and an incenter.
Circumgons include all triangles, all regular polygons, some special irregular
polygons and even nonconvex polygons (such as star-shaped polygons), and
other plane figures composed of line segments and circular arcs. This chapter
shows that all circumgons share common properties regarding area-perimeter
ratios and centroids. For example, the ratio of the area of a region bounded
by a circumgon to its semiperimeter is equal to its inradius (just as the ratio
of the area of a circular disk to its semiperimeter is its radius). Also, the area
centroid of a region bounded by a circumgon and the centroid of its boundary
curve are collinear with the incenter, at distances in the ratio 2:3 from the
incenter, as in the case of a triangle. Corresponding results are derived for
circumgonal rings, plane regions lying between two similar circumgons. These
rings have constant width. The ratio of the area to the semiperimeter of such
a ring is equal to the constant width. Relations between the area centroid of
a circumgonal ring with the centroid of its boundary are also given.

The results are extended to n-space by introducing circumsolids, solids that
circumscribe an n-sphere. Each circumsolid has an incenter and an inradius.
For n = 3 they include tetrahedra, regular polyhedra, some special irregular
polyhedra and even nonconvex polyhedra (such as stellated polyhedra), and
many other solids whose faces can be cylindrical, conical, or spherical, as well
as planar. All circumsolids in n-space share a common property: the ratio of
volume to outer surface area is 1/n times the inradius. Profound implications
of this property are given in Chapter 13. Also, the volume centroid of a
circumsolid and the centroid of its outer boundary surface area are collinear
with the incenter, at distances in the ratio n/(n + 1) from the incenter.

Circumsolids offer a rich variety of applications, as shown by examples
in 3-space that include star-like circumsolids such as stellated dodecahedra,
and intersections of circumsolids. One application of the volume-surface area
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104 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

ratio shows that a plane through the incenter of a circumsolid divides it into
two smaller solids whose surface areas are equal if, and only if, their volumes
are equal. Another yields (without integration) the volume of the solid of
intersection of a right circular cone and an orthogonal circular cylinder having
the same insphere. A limiting case is the classical Archimedean result on
intersecting cylinders.

The chapter also treats circumsolid shells in 3-space, solids lying between

two similar circumsolids with the same incenter. They have constant thick-

ness, and the ratio of volume to mixed average surface area is one-third of

the constant thickness. This implies far-reaching extensions of the classical

Egyptian and prismoidal formulas to nonplanar surfaces.

4.1 INTRODUCTION

We begin by generalizing Archimedes’ striking discovery concerning the area of a
circular disk, which for our purposes we prefer to state as follows:

Theorem 4.1. (Archimedes) The area of a circular disk is one-half the product of
its perimeter and its radius.

Expressed as a formula, this becomes

A =
1

2
Pr, (4.1)

where A is the area, P is the perimeter, and r is the radius of the disk. First we
extend (4.1) to a large class of plane figures circumscribing a circle that we call
circumgons, defined in Section 4.2. They include arbitrary triangles, all regular
polygons, some irregular polygons, and other figures composed of line segments and
circular arcs. Examples are shown in Figures 4.1 through 4.4. Section 4.3 treats
circumgonal rings, plane regions lying between two similar circumgons. These rings
have a constant width that replaces the radius in the extension of (4.1). We show
that all rings of constant width are necessarily circumgonal rings. We also describe
centroidal relations associated with circumgons and circumgonal rings. A special
case is a result of Archimedes on the centroid of a trapezoid.

In Section 4.6 we provide corresponding results for 3-space, in which we gener-
alize another discovery of Archimedes:

Theorem 4.2. (Archimedes) The volume of a sphere is one-third the product of its
surface area and its radius.

We extend this result to a class of general solids called circumsolids, a three-
dimensional extension of circumgons. The faces of a circumsolid can be curved as
well as planar. The curved faces can be cylindrical, conical, or spherical. Each
circumsolid circumscribes a sphere, and we provide a direct extension of Theorem
4.2 for any circumsolid. Extensions to n-space for n ≥ 3 are also indicated.

Many new results emerge as applications. For example, we determine the volume
of the solid of intersection of a cone and cylinder without using calculus. We also
generalize several classical centroid relations, as well as the Egyptian and prismoidal
formulas for volume.
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4.2. CIRCUMGONS 105

4.2 CIRCUMGONS

To pave the way for the general definition of a circumgon, we begin with some
examples. The prototype is a triangle; it circumscribes a circle whose center is the
point of intersection of the three angle bisectors. By dividing a triangle into three
smaller triangles with a common vertex at the center of the inscribed circle, we
easily see that (4.1) holds for any triangle of area A and perimeter P , where r is
the radius of the inscribed circle.

(a) (b)

Figure 4.1: Examples of circumgons: (a) a regular hexagon and (b) a nonregular pentagon.

A polygon with more than three edges may or may not circumscribe a circle.
We are interested in those that do, because they provide examples of circumgons.
Every regular polygon is a circumgon, but there are also nonregular circumgons,
as illustrated in Figure 4.1b. Like a triangle, any polygon circumscribing a circle
is a circumgon. The inscribed circle is called the incircle, its radius is called the
inradius, and its center is called the incenter. Bisectors of the interior angles of a
circumgon intersect at the incenter. By dividing the polygon into triangles with one
common vertex at the incenter it is easily seen that (4.1) holds for every circumgon
whose boundary is a convex polygon.

(a) (b)

Figure 4.2: The area of each circumgonal region is half its perimeter times its inradius.

We will also extend (4.1) to more general circumgons, not necessarily convex,
such as the polygon in Figure 4.2a, or the star-shaped polygon in Figure 4.2b, and to
more general polygonal shapes, not necessarily closed, such as the example in Figure
4.4a. It may seem surprising that nonconvex polygons can circumscribe a circle. It’s
true that our examples are not ordinary garden-variety circumscribing polygons, but
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106 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

when viewed appropriately, they do circumscribe a circle. For example, in Figure
4.2a only two edges of the polygon are tangent to the incircle. The other four
edges do not even touch the incircle, but their extensions, shown by dotted lines,
are tangent to the incircle. In Figure 4.2b, none of the edges of the pentagram
touches the incircle, but each extended edge, shown by dotted lines, is tangent to
the incircle.

Building blocks of a circumgonal region. The definition of a general cir-
cumgonal region will be formulated in terms of simpler elements called building
blocks, defined as follows.

Start with a circle, and consider a triangular region with one vertex at the center
and with side opposite the vertex lying on a line tangent to the circle. We call this
triangular region a building block of a circumgonal region; the side opposite the
center on the tangent line is called the outer edge of the block. An example is
shown in Figure 4.3a. The circle is the incircle, its radius is the inradius, and its
center is the incenter. Because a circular arc can be regarded as a limiting case of
circumscribing polygons, we also allow any sector of the incircle to be a building
block of a circumgonal region, with its outer edge being the circular arc, as shown
in Figure 4.3b. Thus, the area of each building block, whether it is a triangular
region or a circular sector, is equal to half the length of its outer edge times the
inradius.

(a) (b)

outer edge

Figure 4.3: A building block of a circumgonal region is either (a) a triangular region or
(b) a circular sector. Its perimeter is the length of the outer edge.

To extend Theorem 4.1, we simply define the perimeter of the block to be the
length of its outer edge. This gives us:

Theorem 4.3. The area of a circumgonal building block is equal to half the product
of its perimeter and its inradius.

Definitions of circumgonal region and circumgon. A circumgonal region
is the union of a finite set of nonoverlapping building blocks having the same incircle.
The union of the corresponding outer edges is called a circumgon; the sum of the
lengths of the outer edges is called the perimeter of the circumgon.
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The perimeter of a circumgon, as just defined, is not its perimeter in the usual
Euclidean sense unless the circumgon is closed.

The definition immediately gives an extension of Theorem 4. :

Theorem 4.4. The area of a circumgonal region is equal to half the product of its
perimeter and its inradius.

Both Theorems 4.3 and 4.4 are described by the formula used for Theorem 4.1:

A =
1

2
Pr, (4.2)

where A is the area, P is the perimeter, and r is the inradius of the circumgon.
Two examples satisfying (4.2) are shown in Figure 4.4.

(a) (b)

Figure 4.4: More examples of circumgonal regions: the area of each is half its perimeter
times its inradius.

4.3 CIRCUMGONAL RINGS

Figure 4.5 (right) shows a simple type of ring, the region between two similar
nonoverlapping simple closed curves with similarity ratio λ, where 0 < λ < 1. We
call λ the size factor because it determines the size of the inner curve relative to
the outer one. If the outer region has perimeter P0 and area A0, the inner region
has perimeter λP0 and area λ2A0, regardless of the choice of center of scaling.

P 0 
A 0 

perimeter P 0 
A 0 λ2 

λ
and area and area 

perimeter 

Figure 4.5: A simple closed curve with perimeter P0 and area A0 used to form a ring
with size factor λ.

3
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108 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

We are interested in rings formed by scaling a circumgonal region from its in-
center. The inner and outer boundaries need not be closed curves because the
circumgons need not be closed.

For a general ring the perpendicular distance between the boundary curves need
not be constant, even if portions of the boundaries are parallel, as in the case of two
similar rectangles. But if the ring is formed by scaling a circumgonal region from its
incenter, it is easy to show that the perpendicular distance between corresponding
parallel segments (or circular arcs) is a constant, which we call the width of the ring.

(a) (b) (c)

w

w

w

w

w

w

Figure 4.6: Examples of circumgonal rings. The annulus in (a) and the trapezoid in (b)
are extreme cases.

Figure 4.6 shows examples of circumgonal rings. The circular annulus in (a) and
the trapezoid in (b) are extreme cases. A more general example is shown in (c). In
each case, the constant width w is the perpendicular distance between its parallel
edges. It is also true that circumgonal rings are the only rings having constant
width. In fact, we have:

Theorem 4.5. (a) A circumgonal ring formed by scaling a circumgonal region from
its incenter has constant width.

(b) Conversely, consider a ring formed by two similar contours, where the outer
contour consists of a finite set of line segments and circular arcs. If the ring has
constant width, then it is necessarily a circumgonal ring.

Proof. The proof of (a) is an easy exercise, which shows that the constant width
w is given by

w = (1− λ)r,

where r is inradius of the larger circumgon and λ < 1 is the scaling factor.

To prove (b), refer to Figure 4.7, which shows a trapezoidal portion of the
ring formed by parallel line segments AB and A′B′ having w as the perpendicular
distance between them. The intersection O of the lines through AA′ and BB′ is
the center of similarity, and OA′ = λOA, where λ (< 1) is the scaling factor. Let
Q be the foot of a perpendicular from O to the line through AB. The circle with
center O and radius OQ is tangent to the line through AB, so AB is an outer edge
of a circumgon with incenter O and inradius OQ. By similarity, the point Q′ on
OQ satisfies OQ′ = λOQ, and the circle with center O and radius OQ′ is tangent
to the line through A′B′, so A′B′ is an outer edge of a circumgon with incenter
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Q

Q'

A B

A'
B'

O

w

Figure 4.7: Illustrating the proof that every ring of constant width is a circumgonal ring.

O and inradius OQ′. But w = OQ − OQ′ = (1 − λ)OQ, hence OQ = w/(1 − λ)
and OQ′ = λw/(1−λ). Thus the inradii and incenter O are completely determined
by the width w and the scaling factor λ, as given above. This means that every
trapezoidal portion of the ring circumscribes the same pair of circles. Consequently,
the entire polygonal part of the ring is circumgonal with incenter O. The proof is
even simpler for each portion of the ring that is a circular sector (of width w).

The next result extends Theorem 4.4 to circumgonal rings.

Theorem 4.6. The area of a circumgonal ring is equal to half the product of its
perimeter and its (constant) width.

This can also be expressed as a formula resembling (4.2):

A =
1

2
Pw, (4.3)

where A is the area of the ring, P is its total perimeter, and w is its constant width.

Proof. If the outer boundary has perimeter P0 and encloses a region of area A0,
then the ring has area A = (1 − λ2)A0 and total perimeter P = (1 + λ)P0. For a
circumgonal ring with inradius r of the larger circumgon we have A0 = P0r/2, from
which we find that

A = (1− λ)(1 + λ)P0r/2 = (1− λ)Pr/2 = Pw/2,

as asserted. It is not surprising that (4.3) gives the formula for the area of a circular
ring (Figure 4.6a). But it is reassuring to learn that (4.3) also becomes the well-
known formula for the area of a trapezoid, average base times altitude. In fact, in
Figure 4.6b half the perimeter of the ring is the average length of the two parallel
edges, and the width of the ring is the altitude of the trapezoid.

4.4 CENTROIDS OF CIRCUMGONAL REGIONS

This section derives a simple but surprising relation between the area centroid of a
circumgonal region and the centroid of its boundary. Specifically, denote by C(A)
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110 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

the vector from the incenter O to the area centroid, and by C(B) the vector from
O to the centroid of the boundary curve (with respect to arclength). Figure 4.8b
illustrates these for a triangle. We will prove that, for a circumgon, the location of
one of the centroids determines the location of the other. In fact, we have:

Theorem 4.7. The area centroid C(A) of a circumgonal region and the centroid
C(B) of its boundary are collinear with the incenter, and are related by

C(B) =
3

2
C(A). (4.4)

Proof. A classical result of Archimedes states that the area centroid of a triangle
is at the intersection of its medians. It is also known that the distance from each
vertex to the centroid is two-thirds the length of the median from that vertex. (For
proofs, see Chapter 12.) Apply this to the triangular block with incenter O and
outer edge of length a shown in Figure 4.8a. In vector notation, C(A) = (2/3)C(B),
where C(B) is the midpoint of the outer edge. Hence

C(B) =
3

2
C(A), (4.5)

which proves (4.4) for a triangular block.
Now take a polygonal circumgon with triangular building blocks having outer

edges of lengths a1,..., an, a common vertex at the incenter O, and respective areas
A1,..., An. Figure 4.8b shows the case of a triangle.

O
C(A) C(B) O

C(A)
C(B)

(a) (b)
length a

Figure 4.8: Centroid C(A) = (2/3)C(B) for (a) a triangular block, and (b) for any
triangle with incenter O.

Denote by C(A1),..., C(An) the corresponding vectors from the incenter O to
the area centroid of each triangular block. The area centroid of their union is at
the point described by the vector

C(A) =

∑n
k=1 AkC(Ak)∑n

k=1 Ak
. (4.6)

In (4.6), write Ak = akr/2, where r is the inradius. The common factor r/2 cancels,
and (4.6) becomes

C(A) =

∑n
k=1 akC(Ak)∑n

k=1 ak
. (4.7)
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4.4. CENTROIDS OF CIRCUMGONAL REGIONS 111

On the other hand, the vector C(B) from O to the centroid of the boundary is

C(B) =

∑n
k=1 akC(Bk)∑n

k=1 ak
,

where C(Bk) denotes the vector from O to the midpoint of the kth outer edge.
Apply (4.5) to each triangular block to find that C(Bk) = (3/2)C(Ak). Use this in
the last equation and compare with (4.7) to obtain (4.4) for a polygonal circumgon.

Because a circular arc can be regarded as a limiting case of a circumscribing
polygon, (4.4) also holds for circumgons that include circular arcs as part of their
boundaries.

We can also deduce (4.4) for a circular sector in a different manner. It is known
(see Chapter 12) that the area centroid of a circular sector of radius r subtend-
ing a central angle 2α lies on the radial line that bisects the sector at a distance
(2/3)r(sinα)/α from the center, and the centroid of the outer arc is at a distance
r(sinα)/α from the center. Consequently, (4.4) holds for every circular sectorial
building block of a circumgon.

In particular, (4.4) holds for any triangle, and also for any polygon circum-
scribing a circle. Because these two cases are so basic, we restate them here as
corollaries:

Corollary 4.1. (a) The area centroid C(A) of a triangle and the centroid C(B) of
its boundary are collinear with the incenter and are related by

C(B) =
3

2
C(A). (4.8)

(b) The same relation holds for a polygon circumscribing a circle.

The results for these two classical cases are so simple that we thought they must
surely be known. If so, they are well hidden because we could find neither of them
in the literature.

O

O'
M

Figure 4.9: Another argument showing that C(B) = (3/2)C(A) for a triangle.

Another derivation of Corollary 4.1(a) can be given by referring to Figure 4.9.
It is known that the centroid of the boundary of a triangle is the incenter O′ of the
medial triangle shown. Both triangles have common median lines, hence a common
area centroid at point M . The incenter O of the larger triangle is collinear with
O′ and M , and its inradius is twice that of the smaller triangle, so OM = 2MO′.
Consequently OO′ = OM +MO′ = (3/2)OM, in agreement with (4.8).
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112 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

4.5 CENTROIDS OF CIRCUMGONAL RINGS

There are companion results for the centroid of a circumgonal ring. For simplicity,
we refer to a ring with size factor λ simply as a λ-ring. First we have:

Theorem 4.8. The area centroid C(Aring) of a circumgonal λ-ring is related to
the area centroid C(Aouter) of the outer circumgon by

C(Aring) =
1− λ3

1− λ2
C(Aouter). (4.9)

Proof. Let C(Ainner) denote the area centroid of the inner circumgon, and let
Aouter and Ainner denote the areas of the outer and inner circumgons, respectively.
Equating moments we have

(Aouter −Ainner)C(Aring) +AinnerC(Ainner) = AouterC(Aouter).

Because of the relations

C(Ainner) = λC(Aouter), Ainner = λ2 Aouter,

the foregoing equation reduces to (4.9). Now (1−λ3)/(1−λ2) = (λ2+λ+1)/(λ+1),
so (4.4) is a limiting case of (4.9) as λ→ 1. In fact, our original discovery of (4.4)
was obtained as this limiting case of (4.9).

Next, we extend Theorem 4.7 by relating the area centroid C(Aring) of a cir-
cumgonal ring with the centroid C(Btotal) of its full boundary.

Theorem 4.9. The area centroid C(Aring) of a circumgonal λ-ring is related to
the centroid C(Btotal) of its boundary by

C(Aring) =
2

3

λ2 + λ+ 1

λ2 + 1
C(Btotal). (4.10)

Proof. Denote the vectors from the incenter to the centroids of the inner and
outer boundaries, respectively, byC(Binner) andC(Bouter). Let Pin and Pout denote
the corresponding inner and outer perimeters. The definition of centroid states that

C(Btotal) =
Pin C(Binner) + Pout C(Bouter)

Pin + Pout
.

Because of the relation Pin = λPout this becomes

C(Btotal) =
λ C(Binner) + C(Bouter)

λ + 1
. (4.11)

But
C(Binner) = λC(Bouter),

and by (4.4),

C(Bouter) =
3

2
C(Aouter)
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4.5. CENTROIDS OF CIRCUMGONAL RINGS 113

so (4.11) can be written as

C(Btotal) =
3

2

λ2 + 1

λ+ 1
C(Aouter),

which, together with (4.9), gives

C(Aring) =
2

3

λ+ 1

λ2 + 1

1− λ3

1− λ2
C(Btotal) =

2

3

λ2 + λ+ 1

λ2 + 1
C(Btotal),

as asserted.
The next theorem relates the area centroid C(Aring) of a circumgonal ring to

the centroids of its outer and inner boundary curves.

Theorem 4.10. For a circumgonal λ-ring the following hold:

C(Aring) =
2

3

λ2 + λ+ 1

λ + 1
C(Bouter), (4.12)

C(Aring) =
2

3

λ2 + λ+ 1

λ(λ + 1)
C(Binner), (4.13)

C(Aring) =
2

3

λ2 + λ+ 1

1− λ2
(C(Bouter)−C(Binner)), (4.14)

C(Aring)−C(Binner) =
λ + 2

1 + 2λ
(C(Bouter)−C(Aring)). (4.15)

Proof. Theorem 4.8 and (4.4) yield (4.12), which implies (4.13). From (4.12)
and (4.13) we infer (4.14). From (4.13) we obtain

C(Aring)−C(Binner) =
(1− λ)(λ+ 2)

3λ(λ+ 1)
C(Binner)

=
(1− λ)(λ+ 2)

3(λ+ 1)
C(Bouter),

whereas (4.12) gives us

C(Bouter)−C(Aring) =
(1− λ)(1 + 2λ)

3(λ+ 1)
C(Bouter).

Comparing the last two equations we get (4.15).
For a trapezoid, the result in (4.15) was known to Archimedes [44, Proposition

15, p. 201]:

Corollary 4.2. (Archimedes) The area centroid of a trapezoid lies on the segment
joining the midpoints of its parallel edges and divides this segment in the ratio
(λ+ 2)/ (1 + 2λ) when taken from the shorter parallel edge to the longer, the ratio
of whose lengths is λ.

Archimedes does not state explicitly from where the division point is measured,
but this is implicit in his accompanying diagram.
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114 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

4.6 EXTENSIONS TO 3-SPACE

Although it is well known that every tetrahedron circumscribes a sphere, the follow-
ing two simple consequences apparently have not been previously recorded. First,
a plane through the center of the inscribed sphere divides the tetrahedron into two
smaller solids whose surface areas are equal if and only if their volumes are equal.
Second, the centroid of the boundary surface of a tetrahedron and the centroid of
its volume are always collinear with the center of the inscribed sphere, at distances
in the ratio 4:3 from the center.

The rest of this chapter shows that both these and deeper results hold, not
only for the tetrahedron or any polyhedron that circumscribes a sphere, but for
more general solids called circumsolids (defined in Section 4.8), whose faces can be
curved as well as planar. The curved faces can be cylindrical, conical, or spherical.
Each circumsolid circumscribes a sphere (its insphere), and all share the following
property, proved in Section 4.8:

Theorem 4.11. The volume of a circumsolid is one-third the product of its outer
surface area and the radius of its insphere.

Section 4.7 reveals that Theorem 4.11 is implicitly contained in known formulas
for volume and surface area of many familiar solids that happen to be circumsolids.
Section 4.8 extends the definition of circumgon to circumsolids in 3-space. Section
4.9 applies Theorem 4.11 to interesting examples of circumsolids, including star-
like circumsolids. Section 4.11 uses Theorem 4.11 to solve the difficult problem of
calculating the volume of the solid of intersection of a right circular cone cut orthog-
onally by a right circular cylinder. The result, stated in Theorem 4.17, generalizes
the classical Archimedean result for the intersection of two circular cylinders. Sec-
tion 4.12 relates the volume and surface area centroids of a circumsolid. Section
4.13 determines the volume of a circumsolid shell in terms of its constant thickness,
thus providing a far-reaching extension of the classical Egyptian and prismoidal
formulas. Section 4.14 deals with centroids of circumsolid shells.

4.7 FAMILIAR CIRCUMSOLIDS

For a circumsolid, Theorem 4.11 tells us that V/S = r/3, where V is the volume, S
is the outer surface area, and r is the radius of the insphere (called the inradius).
The following examples illustrate this property with familiar solids that are also
circumsolids.

Example 1 (Sphere). For a sphere of radius r, the known formulas V =
4πr3/3 and S = 4πr2 reveal that V/S = r/3.

Example 2 (Prism circumscribing a sphere). Not every prism circum-
scribes a sphere. A notable exception is a right prism whose base is a regular n-gon.
The base circumscribes a circle whose radius r is that of the inscribed sphere. If
each edge of the base has length a, the lateral surface area is 2nar, and the base
has area nar/2, so the total surface area S = 3nar. Its volume V = nar2, which
gives V/S = r/3.
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4.7. FAMILIAR CIRCUMSOLIDS 115

Example 3 (Cylinder circumscribing a sphere). A right circular cylinder
circumscribing a sphere of radius r has volume V = 2πr3, lateral surface area 4πr2,
and total surface area S = 6πr2, implying that V/S = r/3. This also follows from
Example 2, because the cylinder is a limiting case of a circumscribing prism.

Example 4 (Tetrahedron). Every tetrahedron, regular or not, circumscribes
a sphere. It is known, and easy to verify, that its volume V and total surface area
S are related by the formula V = Sr/3, where r is the inradius. In fact, if the four
triangular faces have areas S1, S2, S3, and S4, then S = S1 + S2 + S3 + S4. On the
other hand, the tetrahedron can be divided into four pyramids having a common
vertex at the center of the inscribed sphere and respective volumes Vk = Skr/3,
whose sum is V = Sr/3, as asserted.

Theorem 4.11 yields a simple relation between the inradius and the four altitudes
of a tetrahedron. Let hk denote the altitude to the face of area Sk from the opposite
vertex. Then V = Skhk/3, so Sk = 3V/hk for each k, and their sum is

S = 3V (
1

h1
+

1

h2
+

1

h3
+

1

h4
).

But we also have S = 3V/r, so

1

r
=

1

h1
+

1

h2
+

1

h3
+

1

h4
.

In words, the reciprocal of the inradius of a tetrahedron is the sum of the recip-
rocals of its four altitudes. This extends a corresponding result for the inradius of
a triangle: The reciprocal of the inradius of a triangle is the sum of the reciprocals
of its three altitudes.

Example 5 (Pyramid circumscribing a sphere). A right pyramid whose
base is a regular polygon and whose altitude passes through the center of the base
circumscribes a sphere. Its volume V and total surface area S are related by V =
Sr/3, where r is the inradius. This can be verified by dividing the pyramid into
smaller pyramids with a common vertex at the incenter as was done in Example
4. In fact, the same method applies even if the polygonal base is not orthogonal to
the axis of the pyramid, but slanted as shown in Figure 4.10a. Again, we find that
V = Sr/3. For a right pyramid, this can also be derived (with more effort) from
known formulas for the volume and surface area of a pyramid.

Example 6 (Cone circumscribing a sphere). As the number of edges of
the polygonal base in Example 5 tends to ∞, the pyramid becomes a circular cone
circumscribing the same sphere, as illustrated by Figure 4.10b. Consequently, the
relation V/S = r/3 holds for the limiting cone. For a right circular cone, this can
also be derived from known formulas expressing volume and surface area in terms of
the altitude and slant height of the cone, but additional effort is required to relate
these quantities to the inradius r.

The volume and surface area of a right circular cone have been studied since
antiquity. Apparently no one has previously recorded the remarkable relation V/S =
r/3 connecting its total surface area, volume, and inradius.
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116 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

(a) (b)

Figure 4.10: (a) Pyramid circumscribing sphere; (b) cone circumscribing sphere.

The foregoing examples illustrate the intrinsic presence of Theorem 4.11 in fa-
miliar circumsolids. To extend the applicability of Theorem 4.11 to less familiar
circumsolids, we define general circumsolids in terms of simpler building blocks, by
analogy with the definition of circumgons as given in Section 4.2.

4.8 BUILDING BLOCKS OF A CIRCUMSOLID

Instead of two types used in the plane we consider four types, as illustrated in
Figure 4.11. This leads to a class of circumsolids with more extensive applications
than the class of circumgons treated in the planar case.

Flat-faced building block.

Start with a sphere (called the insphere), and a tangent plane. In the plane, consider
a region F bounded by a simple closed curve, and assume that F has a finite area.
Form the union of all line segments joining the incenter to the points of F . This is a
conical solid having F as its base, the incenter as its vertex, and the inradius as its
altitude. The term “conical solid” is used with the understanding that the solid is
a pyramid when the base is polygonal. We call this solid a flat-faced building block,
and we call F its outer face (Figure 4.11a). This is the 3-dimensional analog of the
triangular wedge building block in Figure 4.3a, the outer face being the analog of
the outer edge. We extend the analogy further by defining the outer surface area of
the building block to be the area of its outer face. Because the volume of a conical
solid is one-third the area of its base times its altitude, the volume of a flat-faced
building block is one-third the product of its outer surface area and its inradius.

Any polyhedral solid circumscribing a sphere is the union of a finite number
of flat-faced building blocks, each of whose outer faces is polygonal. The surface
area of a polyhedral solid is the sum of the areas of its polygonal faces, and its
volume is the sum of the volumes of the blocks. Hence, Theorem 4.11 holds for
every polyhedral circumsolid.
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(a) flat-faced (b) cylindrical-
faced

(c) conical-
faced

(d) spherical-
faced

F

F F

F

Figure 4.11: Four types of building blocks for a circumsolid.

The most general circumsolid is one that can be obtained from flat-faced building
blocks by a limiting process. Again, start with a sphere (the insphere), and consider
a region F of finite area lying on a surface tangent to the insphere, for example, on
a developable surface with generators tangent to the insphere. The set of all line
segments joining the incenter to points of F can be regarded as a building block with
F as its outer face, and we call the area of F the outer surface area of the building
block. The most general surface tangent to a sphere is not easy to visualize. For
simplicity, we consider only four familiar types of surfaces tangent to the insphere:
a plane, a cylinder, a cone, and the sphere itself. These are especially suitable for
applications. The plane gives flat-faced building blocks, and we turn now to the
other three types.

Cylindrical-faced building block.

In this type, shown in Figure 4.11b, the outer face F lies on a cylindrical surface
tangent to the sphere. We call this a cylindrical-faced building block. Every such
block is the limit of flat-faced building blocks, so its volume is one-third the product
of its outer surface area and its inradius.

Conical-faced building block.

For this type, shown in Figure 4.11c, the region F lies on a conical surface tangent
to the sphere. We refer to this type as a conical-faced building block. Every conical-
faced building block is again the limit of flat-faced building blocks, ensuring that
its volume is one-third the product of its outer surface area and its inradius.

Spherical-faced building block.

This is the 3-dimensional analog of a circular sector building block, and we call it a
spherical-faced building block (see Figure 4.11d). In this case F lies on the surface
of the insphere and plays the role of the circular arc intercepted by the circular
sector in Figure 4.3b. As with the previous types, each spherical building block is
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118 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

the limit of flat-faced building blocks. Its volume is thus one-third the product of
its outer surface area and its inradius.

Definition of circumsolid. A circumsolid is the union of a finite set of nonover-
lapping building blocks having the same insphere. The sum of the areas of the outer
faces is called the outer surface area of the circumsolid.

This definition leads to the following equivalent formulation of Theorem 4.11:The
ratio of volume to outer surface area of any circumsolid is one-third its inradius.

Extensions to n-space.

We can start with an n-sphere as insphere and introduce n-circumsolids by using
building blocks employing portions of (n − 1)-dimensional hyperplanes, cylinders,
cones, and spherical surfaces by analogy with those shown in Figure 4.11. As might
be expected, more types of building blocks are possible in higher-dimensional space.
In Chapter 13 we will encounter several new types of n-circumsolids, among which
are the n-cylindroid, n-double conoid, and n-hexaconoid. All the circumsolids share
a fundamental property that extends Theorem 4.11 and relates their volumes and
outer surface areas. If an n-circumsolid with insphere of radius r has volume Vn

and outer surface area Sn, then we have:

Theorem 4.12. (Circumsolid Property) The ratio of volume to outer surface area
of an n-circumsolid is one-nth its inradius. Equivalently, we have

Vn =
r

n
Sn. (4.16)

When n = 2 the circumsolid is a circumgonal region with the insphere being
the incircle, and Theorem 4.12 becomes Theorem 4.4. When n = 3, Theorem 4.12
reduces to Theorem 4.11. The following consequence of Theorem 4.12 does not
depend explicitly on the inradius or the dimensionality of the space.

Theorem 4.13. For two n-circumsolids with the same inradius, the ratio of their
volumes is equal to the ratio of their outer surface areas.

Proof. Take two n-circumsolids with the same inradius that have volumes V
and V ′ and respective outer surface areas S and S′. From (4.16) we see that
V/V ′ = S/S′, which immediately gives Theorem 4.13.

4.9 APPLICATIONS OF THEOREM 4.13

In this section we assume n = 2 or n = 3. A striking consequence of Theorem
4.13 is obtained by cutting an n-circumsolid with an (n − 1)-dimensional plane
through its incenter. (We use the term “plane” rather than the more precise term
“hyperplane,” with the understanding that if n = 3 it means an ordinary plane,
while if n = 2 it refers to a line in the plane of the circumgon.) A finite set of planes
passing through the incenter divides the solid into smaller circumsolids that have
the same insphere but do not include the common (n− 1)-dimensional faces in the
dividing planes. Each pair of circumsolids has the same inradius, so Theorem 4.13
has the consequence:
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Theorem 4.14. A finite set of planes passing through the incenter of an n-circumsolid
divides the circumsolid into smaller n-circumsolids in such a way that the ratio of
the outer surface areas of any two is equal to the corresponding ratio of their vol-
umes.

Corollary 4.3. A plane through the incenter of an n-circumsolid bisects the outer
surface area if and only if it bisects the volume. In this case, the two solids so
formed (including the common face, if there is one) have equal total surface areas
and equal volumes.

For a tetrahedron, this gives the result mentioned in the opening paragraph of
Section 4.6, which we believe is new. The bisecting property for the case of a planar
triangle is known [68]. Our simple proof, based on Theorem 4.13, makes the result
seem almost trivial, not only for a triangle but for any circumgon.

The importance of Theorem 4.12 has been revealed by its connection with many
familiar circumsolids and by its consequences in Theorems 4.13 and 4.14. But its real
power comes into play when applied to a broader class of complicated circumsolids.
For example, we can construct new families of circumsolids by replacing the regular
polygonal bases of the prisms and pyramids in Examples 2 and 5 with circumgons,
as suggested by the examples in Figure 4.12a and 4.12b. And we can form even
more new families by truncating a circumsolid by one or more planes tangent to the
insphere, as indicated by the examples in Figure 4.12c, d, and e.

(a) (b) (c) (d) (e)

Figure 4.12: Further examples of circumsolids.

Our results can be used to analyze various intersections of circumsolids having
the same insphere (see Section 4.11).

Example 7 (Archimedean dome and circumscribing prism). Figure
4.13a shows an Archimedean dome (defined in Chapter 5). This circumsolid is the
union of cylindrical-faced building blocks. The axes of the cylinders are coplanar and
intersect at one point. The cross section through the sphere’s equator is a polygon
circumscribing the equator, but the equatorial base is not one of the outer faces
when the dome is regarded as a circumsolid. Each cross section by a plane parallel
to the equator is a similar polygon circumscribing the circular cross section of the
sphere. Figure 4.13b shows the dome circumscribed by a prism, a circumsolid with
the same insphere. Cross sections of the prism parallel to the equator are congruent
to the equatorial polygon in Figure 4.13a.
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120 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

(a) (b)

Figure 4.13: An Archimedean dome (a), and its circumscribing prismatic container (b).
Neither includes the base in surface area comparisons.

Archimedean domes and their circumscribing prismatic containers are discussed
in greater detail in Chapter 5, where it is shown that the ratio Vd/Vp of the dome
volume Vd to the prism volume Vp is 2/3, and that the same is true for the ratio
Sd/Sp of the lateral dome area Sd to the outer prism area Sp (lateral area plus
the area of the top face). This implies Vd/Sd = Vp/Sp, and by Theorem 4.11 this
common ratio is r/3, where r is the inradius.

Example 8 (Star-shaped circumsolids). Like circumgons, circumsolids need
not be convex, and they include star-shaped figures like stellated polyhedra obtained
by extending the faces of regular convex polyhedra. Figure 4.14a shows a stellated
dodecahedron formed by extending the edges of each pentagonal plane face of a
regular dodecahedron until they form a pentagram. The stellated dodecahedron
formed by the twelve intersecting pentagrams can also be constructed by adding
twelve pyramids to the faces as indicated in Figure 4.14b. This is a circumsolid
because each plane face is tangent to the insphere. More examples of star-shaped
circumsolids can be formed by extending the outer plane faces of a convex polyhedral
circumsolid or, for example, by suitably attaching cones to a given insphere. In each
case, the ratio of volume to total surface area is one-third the inradius.

(a) (b) (c)

a

b

Figure 4.14: (a) Stellated dodecahedron. (b) Pyramids added to a dodecahedron. (c)
Pentagram and pentagon obtained by unfolding a pyramid in (b).
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4.10. OPTIMAL CIRCUMGONS AND CIRCUMSOLIDS 121

A stellated polyhedron and its core polyhedron both circumscribe the same
sphere. By Theorem 4.12, the ratio of their volumes is the same as the ratio of their
total surface areas. The ratio can be expressed in terms of planar ratios.

To illustrate with an example, refer to Figure 4.14c, which shows a pentagram
formed by unfolding the five triangular faces of a pyramid in Figure 4.14b onto a
plane surrounding a regular pentagon. The pentagram has ten edges, each of length
a, say, and the pentagon has five edges, each of length b. If γ = a/b, the ratio of their
perimeters is 10a/(5b) = 2γ. Because the pentagram and pentagon circumscribe the
same incircle, the ratio of their areas is also 2γ.

The surface area of the stellated dodecahedron is equal to the total lateral surface
area of the twelve pyramids, each of which consists of five congruent triangles with
total area equal to that of the pentagram, minus the area of the pentagonal base.
Consequently, the ratio of the surface area of the stellated dodecahedron to that of
the dodecahedron is 2γ − 1, which is also the ratio of their volumes. It is known
that γ = (1 +

√
5)/2 (the golden ratio) so 2γ − 1 =

√
5.

The simple calculations of Example 8 lead to the following observations:

area of pentagram

area of pentagon
=

perimeter of pentagram

perimeter of pentagon
= 2γ = 1 +

√
5,

volume of stellated dodecahedron

volume of dodecahedron
=

surface area of stellated dodecahedron

surface area of dodecahedron

= 2γ − 1 =
√
5.

The use of Theorem 4.11 enabled us to deduce the volume and surface area
relations by analyzing planar regions only.

4.10 OPTIMAL CIRCUMGONS AND CIRCUMSOLIDS

Two figures in the plane (or in 3-space) are said to have the same shape if one of
them can be scaled to become congruent to the other. Thus, two similar figures
have the same shape. A typical isoperimetric problem in the plane compares two
different shapes with equal perimeters and asks for the shape with larger area, which
is called optimal. In 3-space, two solids with different shapes having a given surface
area are compared, and the shape with larger volume is called optimal. This section
treats optimal circumgons and circumsolids. The results are of particular interest
because the figures need not be convex and our comparisons lead to quantitative
relations as illustrated in Examples 9 and 10.

The basic formula (4.16) for any n-circumsolid is invariant under scaling, so the
size of a figure plays no role in optimality considerations. Applying (4.16) to two
n-circumsolids with volumes V and V ′, outer surface areas S and S′, and inradii r
and r′, respectively, we find that

V

V ′ =
S

S′
r

r′
,

from which we deduce:
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122 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

Theorem 4.15. Suppose that two different n-circumsolids have equal outer surface
areas. If the ratio of their inradii is ρ, then the ratio of their volumes is also ρ. The
one with the larger inradius has larger volume, hence is optimal.

Corollary 4.4. Among all n-circumsolids with a given outer surface area, the n-
sphere has the largest inradius and the largest volume, and hence is optimal.

Theorem 4.15 not only establishes optimality, which is a qualitative result, but
it also gives a quantitative comparison of areas and volumes. This is demonstrated
by the next two examples.

Example 9 (Equilateral triangle and hexagon). Figure 4.15a shows a
regular hexagon and an equilateral triangle having equal perimeters. Because the
hexagon is more circular than the triangle, it has larger area. What is the exact
ratio of their areas? The two-dimensional version of Theorem 4.15 answers this
question. The ratio of their areas is equal to the ratio of their inradii, so we need
to determine the ratio of the inradii.

r

R

(a) (b) (c)

Figure 4.15: (a) Isoperimetric hexagon and triangle; (b) hexagon inscribed in triangle;
(c) Example 10.

One way to do this is illustrated in Figure 4.15b, which shows a smaller regular
hexagon inscribed in the equilateral triangle. Both are circumgons with the same
incircle, and it is clear from Figure 4.15b that the ratio of their perimeters (triangle
to hexagon) is 9 to 6, or 3/2. Therefore if we scale the inscribed hexagon from
its incenter by the factor 3/2, we obtain the larger hexagon in Figure 4.15a having
the same perimeter as the triangle. The larger hexagon and the original triangle
are circumgons whose inradii have ratio 3/2, so by Theorem 4.15 the ratio of their
areas is also 3/2. In other words, a regular hexagon with the same perimeter as an
equilateral triangle has 3/2 the triangle’s area. This can also be seen directly by
dissecting each polygon in Figure 4.15a into smaller equilateral triangles.

Example 10 (Pentagram and regular pentagon). Suppose that a penta-
gram and a regular pentagon have equal perimeters, as in Figure 4.15c, where the
pentagon circumscribes the pentagram.

What is the exact ratio of their areas?

The midpoints of the edges of the large regular pentagon are the vertices of the
pentagram, and it is clear that the large pentagon has the same perimeter P as the
pentagram. The large pentagon is a circumgon with inradius R and area PR/2,
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4.11. INTERSECTION OF A CONE AND CYLINDER 123

and the pentragram is a circumgon with inradius r and area Pr/2, so the ratio of
their areas is R/r, the ratio of their inradii, as predicted by Theorem 4.15. From
similar triangles in Figure 4.15c we obtain R/r = a/(b/2) = 2γ (see Example 8 and
Figure 4.14c), yielding an area ratio of 2γ:

area of large pentagon

area of pentagram
= 2γ = 1 +

√
5.

The same result can be obtained without explicitly constructing the large pen-
tagon. The pentagram and the smaller pentagon have the same inradius, and we
found in Example 8 that the ratio of their perimeters is 2γ. Therefore, if we expand
the small pentagon from the incenter by the scaling factor 2γ, we obtain a larger
pentagon with the same perimeter as the pentagram. The ratio of their inradii is
2γ, hence by Theorem 4.15 the ratio of their areas is also 2γ. The use of Theorem
4.15 is preferable because it applies in cases in which it is not clear how to construct
explicitly a polygon isoperimetric to another.

The next theorem refers to two n-circumsolids with the same inradius. Theorem
4.15 tells us that the ratio of their volumes is equal to the ratio of their surface areas.
Let μ denote the common ratio (larger to smaller), so that μ ≥ 1.

Theorem 4.16. If two different n-circumsolids have the same inradii, then the one
with smaller volume (or smaller outer area) has optimal shape. Moreover, for the
same outer area the optimal shape has volume exactly μ times larger than the other
shape.

Proof. Expand the smaller solid from its incenter by the scaling factor μ to
match the outer area of the larger solid. Expansion increases the inradius by the
factor μ. In view of Theorem 4.15, its volume is μ times larger, and its shape is
optimal.

Example 11 (Stellated dodecahedron). In Example 8 we showed that the
volume of the stellated dodecahedron is

√
5 times that of the dodecahedron with the

same insphere. Therefore, according to Theorem 4.16 with μ =
√
5, for the same

outer surface area a dodecahedron has
√
5 times larger volume than a stellated

dodecahedron. Similarly, the results of Examples 9 and 10 follow immediately from
Theorem 4.16.

4.11 INTERSECTION OF A CONE AND A CYLINDER
HAVING THE SAME INSPHERE

Figure 4.16a shows a circular cone with a vertical axis and a circular cylinder with
a horizontal axis circumscribing the same insphere of radius R.

Problem: Find the volume of the solid of intersection of this cone and cylinder.

The corresponding problem for two intersecting cylinders originated with Archi-
medes and has become a standard calculus exercise that is relatively easy to solve
because all cross sections in one direction are squares. The result (see Theorem 5.3)
is two-thirds the volume of its circumscribing cube, or 16R3/3.
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124 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

(a) (b) (c)

Figure 4.16: Solid of intersection (a), bounded by a conical surface (b), and a cylindrical
surface (c).

Calculating the volume of the solid of intersection of a cone and cylinder is
much more difficult. In Figure 4.16a, each horizontal cross section perpendicular
to the axis of the cone is a rectangle capped by circular segments on two opposite
edges. The cross-sectional area can be expressed as a complicated function of the
vertical distance from the center of the insphere, and the volume V of the solid
of intersection can be expressed as an integral of the cross-sectional areas. This
approach leads to some unattractive integrals that are not easy to evaluate. They
can be avoided by using Theorem 4.11. The solid in question is a circumsolid, and
Theorem 4.11 tells us that V = RS/3, where S is the area of its outer boundary
surface. This reduces the problem to that of calculating S.

The boundary surface in Figure 4.16a consists of two parts, a conical portion
(Figure 4.16b) whose area we call S1, and a cylindrical portion (Figure 4.16c) whose
area we call S2, each of which can be calculated separately without integration. We
describe the calculations in detail because they involve geometric properties of the
boundary surface that are of independent interest. The final results are:

Theorem 4.17. The intersection of a right circular cone with vertex angle 2α, and
an orthogonal circular cylinder circumscribing the same insphere of radius R, is a
circumsolid. Its boundary surface has a conical portion of area S1 given by

S1 = 4R2(1 +
2α

sin 2α
), (4.17)

and a cylindrical portion of area S2 given by

S2 = 4R2(2 + 2α tanα). (4.18)

The volume of the solid of intersection is V = R(S1 + S2)/3, or

V =
4

3
R3(3 + 2α tan α+

2α

sin 2α
). (4.19)
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4.11. INTERSECTION OF A CONE AND CYLINDER 125

If we keep R fixed in (4.19) and let α → 0, the cone becomes a cylinder of
radius R and the solid becomes the intersection of two orthogonal cylinders (an
Archimedean globe) with volume 16R3/3, as expected.

The proof of Theorem 4.17 depends on a sequence of lemmas. The first, whose
proof is left to the reader, deals with known properties of an ellipse, and does not
involve parameters associated with the cone.

Lemma 4.1. (a) An ellipse with semiaxes of lengths A and B (where B ≤ A) has
eccentricity

√
1− (B/A)2.

(b) If the ellipse lies on a plane inclined at angle β from the horizontal, then its
projection onto a vertical plane through its minor axis is an ellipse with semiaxes
of lengths B and A sin β.

(c) The projected ellipse in (b) is a circle if and only if B/A = sinβ, in which
case the inclined ellipse has eccentricity cosβ.

The next lemma refers to an ellipse of eccentricity cos β cut from a right circular
cone with vertex angle 2α by a plane inclined at angle β from its horizontal base, as
shown in Figure 4.16. Because the eccentricity is cos β, its vertical projection is a
circle, and the circular cylinder having the circle as profile intersects the cone along
the ellipse and along a symmetric congruent ellipse, as depicted in Figure 4.16. The
cone and cylinder are circumsolids with a common insphere whose radius we denote
by R.

Figure 4.17a shows a vertical cross section of the cone and cylinder, cut by a
plane through the axis of the cone. The incenter is O, and C is the center of one of
the two slanted ellipses with major axis QP . (The corresponding diagram for the
congruent slanted ellipse is not shown.) The length of CO is denoted by c, written
as: |CO| = c. When the cone and cylinder circumscribe the same insphere, α and
β are related in a manner described by the next lemma, which also expresses the
lengths of the axes of the ellipse in terms of the inradius R and sinβ.

Lemma 4.2. (a) Angles α and β satisfy the relation

cosα = tanβ. (4.20)

(b) The semiminor axis of the slanted ellipse has length R, and its semimajor axis
has length R/ sinβ.

Proof. First we introduce some notation. In Figure 4.17a, M is the midpoint of
the tangent segment NP , and C is the midpoint of QP. Therefore MC is parallel
to NQ, so the angle OMC is equal to α. A vertical line through O intersects the
base at W , and a vertical line through C intersects NP at T and QW at S. The
incircle touches NQ at Z. Therefore NM and NZ have equal lengths that we
denote by t, while QZ and QW have equal lengths that we denote by s. Finally, let
a = |QS| = |TP |, and let d = |MC|. Now c = |CO| = |TM |, implying that t = a−c
because t = |MP |. Also, MC is parallel to NQ, so 2d = s + t. But s = a + c and
t = a− c, so 2d = s+ t = (a+ c) + (a− c) = 2a, whence

a = d. (4.21)
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126 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

(a) (b) 
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Figure 4.17: (a) Vertical cross section of the intersection of a cone and cylinder circum-
scribing the same insphere; (b) the ceiling ellipse is the vertical projection of the slanted
ellipse onto a horizontal plane through the vertex of the cone.

Next, the right triangle COM shows that R = d cosα, and the right triangle
QSC shows that R = a tanβ. Because a = d, we get (4.20), which proves part (a).

The length of the semiminor axis of the ellipse is R. A glance at the triangle
QSC reveals that the semimajor axis has length A = |QC| = R/ sinβ, which proves
part (b).

Ceiling ellipse.

The projection of the slanted elliptical cross section of the cone onto the ceiling
plane, a horizontal plane through vertex V , is called a ceiling ellipse (Figure 4.17b).
Its semiminor axis has length R and its semimajor axis has length a = R/ tanβ.
The center O of the incircle projects onto the vertex V, and the center C of the
ellipse projects onto a point we denote by C ′.

Lemma 4.3. The ceiling ellipse has eccentricity sin α and one focus at V .

Proof. First we determine the eccentricity. The ceiling ellipse has semiminor
axis of length R and semimajor axis of length a = R/ tanβ, so by Lemma 4.1a, its

eccentricity is
√

1− tan2 β. In light of (4.20), this is
√
1− cos2 α = sinα.

To prove that V is a focus, it suffices to show that

|C ′V | = a sinα, (4.22)

which says that |C ′V | is the length of the semimajor axis times the eccentricity.
But this follows at once from triangle COM in Figure 4.17a and (4.21), because

|C ′V | = c = d sinα = a sinα.
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4.11. INTERSECTION OF A CONE AND CYLINDER 127

Lemma 4.4. Suppose that a right pyramid has a regular n-gon as base and altitude
through the incenter of the base. If α signifies the angle each face makes with the
altitude, then a region of area S on the lateral surface projects onto a plane region
of area S sinα on the ceiling plane. The same is true of a region of area S on the
lateral surface of a right circular cone with vertex angle 2α.

Proof. Each triangular face of the lateral surface of the pyramid with area T
projects onto a triangle of area T sinα in the ceiling plane. Hence any subregion
of the lateral surface of the pyramid with area S has a ceiling projection of area
S sinα. This property is independent of n, and we obtain the result for a cone by
letting n→∞.

Calculation of the conical portion S1.

We refer to Figure 4.18a. In the ceiling plane the shaded region is the ceiling
projection of the conical portion of area S1 and has area equal to S1 sinα. This
area is the sum of the areas of two confocal overlapping ellipses, minus twice the

C'

a α

V

area F

area K = a  (  - sin )/22

θ

(a) (b) (c)

Figure 4.18: (a) Two conical wedges cut by inclined planes; (b) ceiling projection; (c)
calculation of the area F of the focal segment.

area of their intersection. That is, S1 sinα = 2(E − I), where E is the area of the
region bounded by each ceiling ellipse and I is the area of the intersection (Figure
4.18b). The area I is equal to 2F , where F is the area of the focal segment cut from
the ellipse by a chord through its focus perpendicular to the major axis. Hence we
have

S1 sinα = 2E − 4F. (4.23)

Now we calculate E and F separately. Each ceiling ellipse has semiaxes of lengths
R and R/ tanβ, so E = πR2/ tanβ, and from (4.20) we find that

E =
πR2

cosα
. (4.24)

θ θ
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128 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

The next lemma evaluates F in terms of R and α.

Lemma 4.5. The elliptical focal segment has area F given by

F = R2(
π − 2α

2 cosα
− sinα). (4.25)

Proof. In Figure 4.18c the focal segment of area F is shown shaded. Inscribe the
ceiling ellipse in a circle with center at C ′ and with radius equal to a, the length of
the semimajor axis. Because the ellipse has eccentricity sinα, a radial line from C ′

intersects the vertical chord through the focus V at an angle α. The radial line and
its mirror image subtend a central angle θ = π − 2α, and the circular segment cut
by the vertical chord through V has area K = a2(θ − sin θ)/2. But a = R/ cosα,
which leads to

K =
1

2
(

R

cosα
)2(θ − sin θ) = R2(

π − 2α

2 cos2 α
− sin 2α

2 cos2 α
) = R2(

π − 2α

2 cos2 α
− sinα

cosα
).

Now cos α is the dilation factor in the vertical direction that converts the circular
segment to the elliptical focal segment, so K cosα = F , and we obtain (4.25).
Finally, use (4.25) and (4.24) in (4.23), then divide by sinα, to obtain (4.17) in
Theorem 4.17.

Calculation of the cylindrical portion S2.

First we recall a known property of an ellipse unwrapped from a right circular
cylinder, as discussed in Section 5.8. Cut a right circular cylinder of radius R by a
plane through a diameter of its base at an angle of inclination γ, where 0 < γ < π/2.
The example in Figure 4.19a shows part of the elliptical cross section and a wedge

(a) (b)

y(x)=H sin (x/R)
γ

R

T

J

x
x0 πR

I

Figure 4.19: The circular arc IJ of length x in (a) unwraps onto the line segment [0,x] in
(b); the altitude of triangle T unwraps onto the height given by y(x) = H sin(x/R), where
H = R tan γ.

cut from the cylinder. A vertical cutting plane parallel to the major axis of the
ellipse intersects the wedge along a right triangle T (shown shaded), with base
angle γ. When the surface of the cylinder is unwrapped onto a plane, the circular
base unfolds along a line we call the x-axis. Here x is the length of the circular
arc measured from I at the extremity of the base diameter to J at the base of the
triangle T , as shown in Figure 4.19a. The base of T has length R sin(x/R), and its
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4.11. INTERSECTION OF A CONE AND CYLINDER 129

height is given by H sin(x/R), where H = R tan γ. Therefore the unwrapped curve
is the graph of the sinusoidal function y with period 2πR and amplitude H given
by y(x) = H sin(x/R).

To adapt the same idea to the solid in Figure 4.16, tip the solid so that the
cylinder’s axis is vertical, as in Figure 4.20. The cutting plane is inclined at an

Δ h

0

A

B
Rα

y = h

x

y = H sin (x/R)

Figure 4.20: The lateral surface area S2 is twice the sum A+B of the areas of the shaded
sinusoidal regions.

angle γ = π/2−β with a horizontal circular cross section of the cylinder and passes
through a chord of the circle at vertical distance h, say, from the diameter. It cuts
the lateral surface of the cylinder into two portions, the sum of whose areas is half
the area S2 in question. When unwrapped onto a plane, they form two shaded
regions bounded by the curve y = H sin(x/R) and the horizontal line y = h. The
area of the shaded region below the sine curve and above the line y = h is denoted
by A, while that of the region below the line y = h and above the sine curve is
denoted by B. The lateral surface area S2 is 2(A+B).

Twice the area of the region under one arch of the curve y = H sin(x/R) is
4HR, and Figure 4.20 shows that 4HR = A+ B − 4Δ, where Δ is the area of the
curvilinear triangular region above the portion of the sine curve over the interval
[0, Rα] and below the line y = h. The distance Rα is the length of the unwrapped

R α

Rα

α

α

Figure 4.21: The unwrapped circular arc of radius R subtends angle α; its length is Rα.
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130 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

circular arc of radius R subtending angle α (see Figure 4.21). The area Δ, in
turn, is the area of a rectangle of base Rα and altitude h, minus the area of the
curvilinear triangular region below the sine curve. Because h = H sinα we discover
(by Corollary 5.4 in Chapter 5) that

Δ = Rαh−HR(1− cosα),

hence

A+B = 4HR+ 4Δ = 4RH(α sinα + cosα).

Now H = R tan γ = R tan(π/2 − β) = R cotβ = R/ cosα as a result of (4.20).
Therefore,

A+B = 4R2(α tanα+ 1),

which implies (4.18) and completes the proof of Theorem 4.17.

4.12 CENTROIDS OF CIRCUMSOLIDS

In Theorem 4.7 we described a simple but surprising connection between the area
centroid of a circumgon and the centroid of its boundary: they are collinear with
the incenter, at distances in the ratio 3:2 from the incenter. Now we deduce a
corresponding result for circumsolids. Specifically, denote by C(S) the vector from
the incenter O to the centroid of its outer boundary surface and by C(V ) the vector
from O to the volume centroid of the solid. The location of one of the centroids
determines the location of the other. In fact, we have:

Theorem 4.18. The volume centroid C(V ) of a circumsolid and the centroid C(S)
of its outer boundary surface are collinear with the incenter and are related by

C(S) =
4

3
C(V ). (4.26)

Proof. Consider first a flat-faced pyramidal building block whose outer face
is a triangle. The centroid C(S) of the outer triangular face is in the plane of
the triangle (at the intersection of the three medians). The centroid C(V ) of the
pyramid with the outer face as base has its centroid at a distance three-fourths the
distance from the vertex to the centroid of the base. Because C(V ) lies on the line
segment joining the incenter to C(S) we have C(V ) = (3/4)C(S), which implies
(4.26) for each pyramidal building block with a triangular outer face.

Now take a flat-faced circumsolid with polygonal outer faces and divide each
outer face into triangular regions having outer areas S1, . . . , Sn, a common vertex at
the incenter O, and respective volumes V1, . . . , Vn. Denote by C(V1), . . . ,C(Vn) the
corresponding vectors from the incenter O to the volume centroid of each pyramidal
block with a triangular outer face. The vectors from O to the volume centroid C(V )
of their union and to the area centroid C(S) of the boundary are given by

C(V ) =

∑n
k=1 Vk C(Vk)∑n

k=1 Vk
, C(S) =

∑n
k=1 Sk C(Sk)∑n

k=1 Sk
. (4.27)
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In the first fraction, use Vk = Sk r/3, where r is the inradius, and in the second
fraction apply (4.26) to each pyramidal block to find C(Sk) = (4/3)C(Vk). Then
(4.27) implies (4.26) for a polyhedral circumsolid. Because the other types of build-
ing blocks can be regarded as limiting cases of polyhedral circumsolids, (4.26) also
holds for all four types of building blocks and hence for all circumsolids.

Theorem 4.18 was stated for a tetrahedron in the opening paragraph of Section
4.6. It extends Theorem 4.7, a corresponding result for circumgons, that contains
the fraction 3/2 in place of 4/3.

Example 12 (Archimedean dome and circumscribing prism). Recall the
Archimedean dome and its circumscribing prism shown in Figure 4.13. In Chapter
5, Corollary 5.5, it is shown that the centroid of the surface of an Archimedean
dome is at the midpoint of its altitude. If the dome is regarded as a circumsolid
with inradius r, its outer surface area centroid is at distance r/2 from the base.
Therefore, by Theorem 4.18, the volume centroid of the dome is at distance 3r/8
from the base. This generalizes a result found by Archimedes for a hemisphere.
Actually, the result for the volume centroid also holds for each component wedge of
the Archimedean dome. Moreover, if each wedge of inradius r is dilated vertically
by a factor λ to form a semielliptical wedge of altitude h = λr, the elongated wedge
is no longer a circumsolid, but its volume centroid is scaled by the same factor λ to
a distance 3h/8 from the horizontal base.

The circumscribing prism in Figure 4.13b has its volume centroid at distance r/2
from the base. Hence, by Theorem 4.18, the outer surface area of this circumsolid
(lateral surface area plus the top face) has its centroid at a distance 2r/3 from the
base.

Example 13 (Right circular cone). The volume centroid of a right circular
cone of altitude h is known to be on its axis at a distance h/4 from the cone’s base.
If the inradius is r, the volume centroid is at a distance r − h/4 from the incenter.
According to Theorem 4.18, the area centroid of the total surface of the cone is at
a distance 4(r − h/4)/3 from the incenter, hence at height (h− r)/3 from the base
of the cone. In other words, the height of the centroid of the total surface area of
a cone above its base equals one-third the distance h− r between the incenter and
the vertex. The same is true for any right pyramid with a circumgonal base and
altitude passing through the incenter of the base.

4.13 CIRCUMSOLID SHELLS

Circumsolid shells are analogous to the circumgonal rings in the plane introduced
in Section 4.3. For a solid Q and a scalar λ with 0 < λ < 1, choose a point O in Q
and let λQ denote the solid consisting of all points λq scaled from O as q ranges
through all points of Q, and let Qλ denote the solid shell lying between λQ and Q.
The prototype is a spherical shell between two concentric spheres of radii λr and r.

We are interested in the case in which Q is a circumsolid with incenter O and
inradius r. Then λQ is also a circumsolid with the same incenter and with inradius
λr. The inner and outer boundary surfaces of a circumsolid shell Qλ are parallel,
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132 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

in the sense that the perpendicular distance between them is a constant, equal to
(1− λ)r, where r is the inradius of the larger circumsolid Q. This constant, which
we denote by w, is called the thickness of the shell:

w = (1− λ)r. (4.28)

This proves part (a) of the following theorem:

Theorem 4.19. (a) Every circumsolid shell has constant thickness.
(b) Conversely, any solid shell with constant thickness lying between two similar

solids λQ and Q is necessarily a circumsolid shell.

Theorem 4.19 extends Theorem 4.5 for circumgonal rings. Part (b) can be
proved by passing a plane through the center of similarity perpendicular to each
pair of faces, thus reducing the problem to the 2-dimensional case. We omit details.

Volume-surface area relations for circumsolid shells.

If the outer solid Q of a shell has area S and volume V , the inner solid λQ has area
T = λ2S and volume λ3V. The shell Qλ itself has total surface area S′ = S + T =
(1 + λ2)S, and volume V ′, where

V ′ = (1− λ3)V = (1− λ)(1 + λ+ λ2)V.

If the outer solid is a circumsolid with volume V , then V = Sr/3, from which we
find, using (4.28). that

V ′ =
r

3
(1− λ)(1 + λ+ λ2)S =

w

3
(S + λS + λ2S).

But λ2S = T , so λ =
√
T/S , and the formula for V ′ becomes

V ′ =
w

3
(S +

√
ST + T ). (4.29)

This has the same form as the famous Egyptian formula for the volume of a
truncated square pyramid, where S and T are areas of the square planar bases. In
our version of (4.29), the inner and outer faces need not be planar. It can be used,
for example, to calculate the volume of a hemisphere, taken as a circumsolid shell
with inner surface area T = 0. In (4.29), the term

√
ST , the geometric mean of S

and T , is called the mixed area of S and T . The quantity (S +
√
ST + T )/3 that

multiplies w is the average of S, T, and the mixed area
√
ST . We give it its own

name:

Definition. We call the quantity (S +
√
ST + T )/3 the mixed average surface

area of the circumsolid shell and denote it by Save.

Thus, (4.29) reduces to V ′ = wSave, and gives us:

Theorem 4.20. The volume of a circumsolid shell is the product of its mixed
average surface area and its thickness.
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4.14. CENTROIDS OF CIRCUMSOLID SHELLS 133

Theorem 4.20 extends Theorem 4.6, which states the area of a circumgonal ring
is one-half the product of its total perimeter and its width.

It is not easy to interpret the mixed area term
√
ST in (4.29) geometrically

in terms of areas. But (4.29) can be written as (4.30), in which all terms refer
to areas. This alternative form involves the area of the surface midway between
the outer and inner surfaces, that is, the surface whose inradius is r(1 + λ)/2, the
average of λr and r. We call the area of this midway surface the midway area and
denote it by S1/2. The midway surface is the outer surface scaled by (1 + λ)/2,
hence S1/2 = (1 + λ)2S/4, so

4S1/2 = (1 + λ)
2
S = S + 2λS + λ2S = S + 2

√
ST + T,

from which we infer that

4S1/2 + S + T = 2(S +
√
ST + T ) = 6Save.

Now we use (4.29) to obtain the following extension of the classical prismoidal
formula.

Theorem 4.21. A circumsolid shell of thickness w, outer area S, inner area T ,
and midway area S1/2 has volume V ′ given by

V ′ =
w

6
(S + 4S1/2 + T ). (4.30)

In (4.30), the term multiplying w is a weighted arithmetic mean of areas S, T,
and S1/2. When the circumsolid shell is flat-faced with parallel outer planar faces
at distance w apart, (4.30) becomes the classical prismoidal formula.

Because of Theorem 4.19b, circumsolid shells are the most general shells with
curved surfaces for which both the Egyptian formula and the prismoidal formula
give the exact volume. For example, the volume of a hemisphere satisfies both
(4.29) and (4.30) when it is considered as a circumsolid shell (with inner surface
area T = 0). By contrast, with standard use of planar cross sections, the prismoidal
formula gives the correct answer, but the Egyptian formula does not. Another
example is a general solid angle or a truncated version.

4.14 CENTROIDS OF CIRCUMSOLID SHELLS

A companion result to Theorem 4.18 relates the volume centroid of the circumsolid
shell Qλ to that of the outer circumsolidQ. It extends Theorem 4.8, a corresponding
result for circumgonal rings.

Theorem 4.22. The volume centroid C(Qλ) of the circumsolid shell Qλ is related
to the volume centroid C(Q) of the outer circumsolid Q by

C(Qλ) =
1− λ4

1− λ3
C(Q). (4.31)
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134 Chapter 4. CIRCUMGONS AND CIRCUMSOLIDS

Proof. The volume of Qλ is V (Q)− V (λQ). Equating moments we have

(V (Q)− V (λQ))C(Qλ) + V (λQ)C(λQ) = V (Q)C(Q). (4.32)

But V (λQ) = λ3V (Q), V (Q) − V (λQ) = V (Q)(1 − λ3), and C(λQ) = λC(Q),
so (4.32) becomes

(1− λ3)C(Qλ)V (Q) = (1− λ4)C(Q)V (Q),

which implies (4.31).
Theorem 4.18 can be obtained as a limiting case of (4.31) as λ→ 1 because the

shell Qλ has constant thickness and we can regard the area centroid of the boundary
surface of Q as the limiting case of the volume centroid of the shell Qλ as λ→ 1.

The following extension of Theorem 4.22 relates the volume centroid of the shell
Qλ with the area centroid of its full boundary Sλ (inner plus outer):

Theorem 4.23. The volume centroid C(Qλ) of a circumgonal shell Qλ is related
to its area centroid C(Sλ) of its full boundary by

C(Qλ) =
3

4

1− λ4

1− λ3

1 + λ2

1 + λ3
C(Sλ).

This extends Theorem 4.9, which is the planar version. We omit the proof. We
also note the n-dimensional version of Theorem 4.7 relating centroids of circumsolids
in n-space:

C(Sn) =
n+ 1

n
C(Vn). (4.33)

NOTES ON CHAPTER 4

The material in this chapter originally appeared in [16] and [18], the first of
which was awarded a Lester R. Ford Award in August, 2005.

It has long been known that the centroid of the boundary of a triangle need
not be at the same point as the centroid of its interior. In exploring this fact, we
discovered that the two centroids are always collinear with the center of the inscribed
circle, at distances in the ratio 3 : 2 from the center. The original motivation for the
research leading to [16] was to generalize this elegant and surprising result to any
polygon that circumscribes a circle. In doing so we found a corresponding result for
any circumgon, and this led naturally to [18], which gave corresponding results in
3-space, first for any tetrahedron, and then for any circumsolid. In the process we
realized that the essential key to this research was to extend Archimedes’ formula
for the area of a circular disk to any circumgon, and to extend his formula for the
volume of a sphere to any circumsolid.
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Chapter 5

THE METHOD OF
PUNCTURED
CONTAINERS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

In (a), three semicircular cylinders intersect to form a solid with a general tri-
angular cross section in the plane through the three axes. The intersection of four
semicircular cylinders with a square equatorial cross section is shown in (b). Slices
of the solids and their inscribed spheres cut by planes parallel to the equatorial
plane are also shown.

(a) (b)

Compare corresponding slices to show that:

The total surface area S of each solid is four times the area A of the equatorial
polygonal cross section. The volume V of each solid is V = SR/3, where R is the
radius of the inscribed sphere.

135
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5.1. INTRODUCTION 137

5

The method of punctured containers goes to the heart of some of the land-
mark discoveries of Archimedes concerning properties of the sphere. Part 1
of this chapter introduces the method and applies it to a special family of
circumsolids that we call Archimedean globes. Cross sections of globes by
planes parallel to the equatorial plane are disks bounded by similar polygons
that circumscribe the circular cross sections of the sphere. Like the sphere,
which is a limiting case, the volume and surface area of an Archimedean globe
are two-thirds that of its circumscribing prismatic container. The results are
obtained geometrically. The volume and surface area of an Archimedean shell
(the region between two Archimedean globes) are also determined. Surprising
consequences of these new results are: several families of incongruent solids
having equal volume and equal total surface area; the quadrature of the sine
curve; and the location of the centroid of any slice of a circumsolid surface.

Part 2 applies the method to more general solids, including those with

nonuniform densities.

PART 1: ARCHIMEDEAN GLOBES

5.1 INTRODUCTION

A spectacular landmark in the history of mathematics was the discovery by Archi-
medes that the volume of a solid sphere is two-thirds the volume of the smallest
right cylinder that surrounds it, and that the surface area of the sphere is also two-
thirds the total surface area of the same cylinder. Archimedes was so excited by
this discovery that he wanted a sphere and its circumscribing cylinder engraved on
his tombstone, even though there were many other great accomplishments for which
he would be forever remembered. He made this particular discovery by balancing
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138 Chapter 5. PUNCTURED CONTAINERS

slices of a sphere and cone against slices of a larger cylinder, with diameter twice
that of the sphere, using centroids and the principle of the lever, which were also
among his remarkable discoveries.

The volume ratio for the sphere and cylinder can be derived from first princi-
ples without using levers and centroids (see [55]). This simpler and more natural
method, presented in Sections 5.2 and 5.3, paves the way for generalizations. Sec-
tion 5.4 introduces a family of solids circumscribing a sphere. Cross sections cut by
planes parallel to the equatorial plane are disks bounded by similar n-gons that cir-
cumscribe the circular cross sections of the sphere. We call these solids Archimedean
globes in honor of Archimedes, who treated the case n = 4 . The sphere is a limiting
case, n → ∞. Each globe is analyzed by dividing it into wedges with two planar
faces and one semicircular cylindrical face. In fact, Archimedes discussed (both
mechanically and geometrically) volumes of wedges of this type. Figure 5.1 shows
the top view of examples of globes with n = 3, 4, 6, and the limiting sphere.

Figure 5.1: Archimedean globes (top view) showing equators for n = 3, 4, 6, and∞.

As in the case of a sphere, both the volume and surface area of an Archimedean
globe are two-thirds those of its circumscribing prismatic container. Section 5.5
treats the volume of an Archimedean shell, the region between two concentric
Archimedean globes. The results are applied in Section 5.6 to find the surface
area of an Archimedean globe. A common thread in all this work is the reduction
of a problem to a simpler problem. As surprising consequences of these new results,
we also obtain other families of incongruent solids having both equal volume and
equal total surface area (Section 5.7), the quadrature of the sine curve (Section 5.8),
and the centroid of any slice of a spherical surface (Section 5.9).

5.2 VOLUME OF A SPHERE

We present first a geometric derivation of the volume relation between a sphere
and its circumscribing cylinder. By symmetry, it suffices to consider a hemisphere
and its circumscribing cylinder (whose radius is equal to its altitude), as shown in
Figure 5.2. A cone with the same altitude is drilled out of the center of the cylinder.
The cone’s volume is one-third that of the cylinder, so the solid that remains is a
punctured cylinder with volume two-thirds that of the cylinder. To show that the
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5.2. VOLUME OF A SPHERE 139

punctured cylinder has the same volume as the hemisphere, slice both solids by an
arbitrary horizontal plane parallel to the base and note that corresponding cross
sections have equal areas. Now we invoke the following:

Slicing principle. Two solids have equal volumes if their horizontal cross
sections taken at any height have equal areas.

This statement is often called Cavalieri’s principle in honor of Bonaventura
Cavalieri (1598-1647), who attempted to prove it for general solids. Archimedes used
it sixteen centuries earlier for special solids, and he credits Eudoxus and Democritus
for using it even earlier in their discovery of the volume of a cone. Cavalieri employed
it to find volumes of many solids, and tried to establish the principle for general
solids by applying Archimedes’ method of exhaustion, but it was not demonstrated
rigorously until integral calculus was developed in the 17th century. We prefer using
the neutral and more descriptive term slicing principle.

r

x

a a
x

a

a

xx

Figure 5.2: Cross sections of sphere and punctured cylinder have equal areas.

To verify the equality of the cross-sectional areas in Figure 5.2, assume that the
sphere has radius a and that the cutting plane is at a distance x from the center.
It cuts a circular cross section of radius r, say, with area πr2. The corresponding
cross section of the punctured cylinder is an annulus with outer radius a and inner
radius x (because the altitude and radius of the cylinder are equal), so its area is
equal to πa2 − πx2. But r and x are the legs of a right triangle with hypotenuse
a, hence πr2 = πa2 − πx2. In words, corresponding cross sections of the two solids
have equal areas.

Therefore, any two planes parallel to the base cut off solids that have equal
volumes. Thus, we have proved the following theorem, illustrated in Figure 5.3.

Theorem 5.1. Any two planes parallel to the base cut the sphere and the punctured
circumscribing cylinder in solid slices of equal volumes.

Corollary 5.1. (Archimedes) The volume of a sphere is two-thirds the volume of
its circumscribing cylinder.

Throughout this chapter we express the main theorems in the style of Archimedes,
that is, by relating the volume (or surface area) of one solid to that of a simpler
one. Explicit formulas in terms of dimensions of the figures can be deduced from
these theorems.
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140 Chapter 5. PUNCTURED CONTAINERS

Figure 5.3: Two parallel planes cut the sphere and punctured cylinder in solid slices
of equal volumes.

Examples (Formulas for volumes). If a is the radius of the hemisphere in
Figure 5.2, the volume of the punctured cylinder is two-thirds the area of its base
times its altitude, or 2πa3/3, which is also the volume of the hemisphere. The entire
sphere has volume 4πa3/3.

Theorem 5.1 also gives the volume of a spherical segment, the portion of a sphere
of radius a above a plane at a distance R ≤ a parallel to the equatorial plane. The
corresponding punctured circumscribing cylinder has altitude R, from which a cone
of volume πR3/3 has been removed. The difference πa2R− πR3/3 is the volume of
the corresponding portion of the sphere. Subtracting this from the volume of the
hemisphere we get

2

3
πa3 +

1

3
πR3 − πa2R

as the volume of the spherical segment. This can be written as πh2(3a − h)/3,
where h = a−R is the height of the segment. Archimedes derived this by another
method, but expressed it as the ratio (a+ 2R)/(2R) times the volume of a cone of
altitude h inscribed in the spherical segment.

5.3 VOLUME OF A SPHERICAL SHELL

A spherical shell is the region between two concentric spheres. As expected, its
volume is the difference of the volumes of the two spheres. A somewhat unexpected
result is obtained by taking a cross section of the spherical shell by a plane that
cuts both spheres. Suppose the inner and outer radii are r and a, respectively,
and that the cutting plane is at a distance x from the center. We assume that
0 ≤ x ≤ r, so the plane cuts both spheres. The cross section is an annular ring
(Figure 5.4a) of outer radius s and inner radius t, say, with area πs2 − πt2. The
area is independent of x: it’s the same for all cutting planes. This follows from
Mamikon’s sweeping-tangent theorem, as already noted in Section 1.3.

We can also see it directly by applying the Pythagorean Theorem twice, once to
a right triangle with hypotenuse a, and again to a right triangle with hypotenuse r
(see Figure 5.4a). This gives

s2 = a2 − x2, t2 = r2 − x2,

hence π(s2 − t2) = π(a2 − r2). Therefore the area of each annular ring is equal
to πa2 − πr2, which is independent of x. It is also the cross-sectional area of the
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Figure 5.4: The cross-sectional area of a spherical shell cut by a plane that cuts
both spheres is constant.

cylindrical shell between two coaxial cylinders with radii r and a, as shown in Figure
5.4b. Therefore, by the slicing principle we have:

Theorem 5.2. A slice of a spherical shell between two horizontal planes that cut
both spheres has volume equal to the corresponding slice of a cylindrical shell cut by
the same planes.

The volume of the cylindrical shell is the area of its base times its altitude. In
terms of the radii, the volume is π(a2 − r2)h, where h is the distance between the
parallel cutting planes. Thus, for given radii, the volume is proportional to the
distance between the parallel cutting planes.

More generally, the portion of a spherical shell between two horizontal planes
has volume equal to the corresponding portion of the punctured cylindrical shell.
By considering very thin spherical shells we can use this result to deduce the surface
area of a sphere. We prefer to deduce this later in Section 5.6, where we explore
surface areas of general Archimedean globes. In the next five sections we do not
assume a knowledge of the volume or surface area of a sphere; we realize it could be
used to simplify many of our proofs by comparing cross-sectional areas of spheres
and circumscribed globes. Our purpose is to present a sequence of elementary
results that could have been discovered by Archimedes had he tried to simplify his
geometric analysis of wedges.

5.4 VOLUME OF AN ARCHIMEDEAN GLOBE

For convenience in drawing figures, we define first an Archimedean dome circum-
scribing a hemisphere as in Figure 5.5a. The base is an arbitrary polygon circum-
scribing the equator. Each cross section of the dome by a plane parallel to the
base is a similar polygon circumscribing the circular cross section of the sphere and
having the same orientation as the base relative to the polar axis through the cen-
ter. The union of a dome with its equatorial mirror image creates an Archimedean
globe.
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O

(a)  Archimedean dome (b)  Punctured prism atic contai ner 

Figure 5.5: An Archimedean dome whose volume is equal to that of its punctured
circumscribing prism.

Incidentally, globes representing the Earth are often made this way using a regu-
lar dodecagon as the equatorial base. Astronomical observatories use Archimedean
domes to cover their telescopes.

Figure 5.5b shows a circumscribing prism of the dome with the same polygonal
base and the same altitude, from which a pyramid with congruent base and vertex
O has been removed. The pyramid has volume one-third that of the prism, so
the solid that remains has volume two-thirds that of the prism. Each horizontal
cross section of the punctured prism is a polygonal ring bounded by two polygons
similar to the base. We will show that the area of this ring is equal to the area of
the corresponding cross section of the dome, which implies that the dome and the
punctured prism have equal volumes.

To show equality of cross-sectional areas, divide the dome into wedges of the
type shown in Figure 5.6a, with a right triangular base of altitude a, a circular
cylindrical face of radius a, and two vertical plane faces. The curve on the cylindrical
face joining the top of the dome to the vertex of the right angle at the base of the
triangle is called a meridian; it is a quarter of a circle of radius a. The curve on
the other edge of the cylindrical face is an ellipse.

The circumscribing prism is correspondingly divided into different triangular
prisms of altitude a, each having a base congruent to the corresponding right tri-
angular base of the wedge, as shown in Figure 5.6b. Let T denote the area of a
typical triangular base. A horizontal cutting plane at distance x above the base
cuts a triangle of area A(x) from the dome and a trapezoid of area T (x) from the
punctured prism. It suffices to show that A(x) = T (x).

The area of the trapezoid is equal to T minus the area of a smaller similar
triangle of altitude c and similarity ratio c/a, as indicated in Figure 5.6b. But
c/a = x/a, so the smaller triangle has area (x/a)2T, hence T (x) = (1− (x/a)2)T.

Let y be the altitude of the triangular cross section of the wedge in Figure
5.6a cut by a plane at a distance x from the base. This triangle is similar to the
triangular base with similarity ratio y/a, so its area A(x) is (y/a)2T . But from
Figure 5.6a we have x2 + y2 = a2 because the meridian is a circular arc, and
therefore (y/a)2T = (1− (x/a)2)T = T (x). In other words, A(x) = T (x), as we set
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Figure 5.6: Cross-sectional areas A(x) and T (x) are equal for allx.

out to prove. This argument gives us:

Theorem 5.3. (a) Corresponding slices of the globe and punctured prism cut by
two planes parallel to the equator have equal volumes.
(b) The volume of an Archimedean globe is two-thirds the volume of its circumscrib-
ing prism.

When the number of edges of the polygonal base tends to ∞, the equatorial
polygon becomes a circle, the Archimedean globe becomes a sphere, and the cir-
cumscribing prism becomes a circular cylinder. Thus, Theorem 5.1 and Corollary
5.2 are limiting cases of Theorem 5.3.

Examples. Archimedean globes can also be constructed by combining wedge-
like portions of n semicircular cylinders whose axes are in the equatorial plane and
intersect at the center of the inscribed equator, each axis being parallel to an edge
of the polygonal base. The two simplest examples (n = 3 and n = 4) are shown in

(a) (b)

Figure 5.7: Portions of semicircular cylindrical wedges combined to form
Archimedean globes.
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Figures 5.7a and 5.7b. The solid in Figure 5.7b (usually described as the intersection
of two cylinders) has volume two-thirds that of the smallest box that contains it.

We selected the name “Archimedean dome” because of a special case considered
by Archimedes. In his preface to The Method [47; supplement, p. 12] Archimedes
announced (without proof) that the volume of the intersection of two congruent
orthogonal circular cylinders is two-thirds the volume of the circumscribing cube.
In [47; pp. 48-50], Zeuthen verifies this with the method of centroids and levers
employed by Archimedes in treating the sphere. However, if we observe that half
the solid of intersection is an Archimedean dome with a square base, and compare
its volume with that of its punctured prismatic container, we immediately obtain
the two-thirds volume ratio.

As a limiting case, when the polygonal cross sections of an Archimedean dome
become circles and the punctured container becomes a circumscribing cylinder punc-
tured by a cone, we obtain a purely geometric derivation of the Archimedes volume
ratio for a sphere and cylinder. In fact, an Archimedean globe whose equator is a
regular n-gon circumscribing a sphere of radius a has volume (4/3)na3 tan(π/n),
whose limiting value as n→∞ is 4πa3/3, the volume of a sphere of radius a.

5.5 VOLUME OF AN ARCHIMEDEAN SHELL

Next we analyze shells, which are analogous to solids constructed from wedge-
like portions of cylindrical pipes. The volume of the shell between two concentric
Archimedean domes is, of course, the difference between the volumes of the outer
and inner domes. Theorem 5.3(a) gives parts (a) and (c) of the following theorem:

Theorem 5.4. (a) Corresponding slices of an Archimedean shell and the punctured
circumscribing prism cut by two planes parallel to the equator have equal volumes.
(b) A slice of an Archimedean shell between parallel planes that cut both domes has
volume equal to the corresponding slice of a prismatic shell (of constant thickness)
cut by the same planes. The volume is the product of the distance between the
cutting planes and the area of the polygonal ring on the base.
(c) Corresponding slices of two Archimedean shells with bases of equal area cut by
planes parallel to their common equatorial plane have equal volumes.

To prove part (b), look at Figure 5.8a, which shows one wedge cut from two
concentric Archimedean domes with radii r and a, where r < a. The base of the
wedge is a trapezoid of altitude a − r. The wedge is intersected by two parallel
horizontal planes that cut both domes. Horizontal cross sections are trapezoids of
variable altitude, each similar to the trapezoidal base.

The corresponding cross sections in Figure 5.8b are trapezoids of equal area but
with a fixed altitude a − r. Therefore, by the slicing principle, the Archimedean
shell and prismatic shell have equal volumes.
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(a) (b)

a a
r r

Figure 5.8: Parallel planes cut the Archimedean shell and the prismatic shell in
slices of equal volumes.

5.6 SURFACE AREA OF AN ARCHIMEDEAN DOME

Theorem 5.4(b) can be used to give a heuristic argument for determining the surface
area of an Archimedean globe. Because of symmetry it suffices to treat the upper
dome.

Figure 5.9a shows one wedge of a very thin Archimedean shell, with outer base
b, outer radius a, and inner radius r, where r is very nearly equal to a. The shell can
be unwrapped (Figure 5.9b) to form a figure that is flat and almost a prism, with
its volume equal to the lateral area A of the wedge times its thickness, or A(a− r).
We want to determine A.

In proving Theorem 5.4(b) we found that a wedge of an Archimedean shell has
volume equal to that of a portion of a prismatic shell of thickness a−r. This portion,
shown in Figure 5.9c, is nearly a thin rectangular slab of base b, altitude a, thickness
a− r, and volume ba(a− r). Equating this to A(a− r) we find A = ba. The sum of
the lateral areas A of all the slices is equal to the sum of the corresponding products
ba which, in turn, is the lateral surface area of the circumscribing prism.

The same analysis applies to any portion of the Archimedean shell between two
parallel cutting planes. For the limiting case when r → a we obtain:

Theorem 5.5. (a) The lateral surface area of a slice of an Archimedean globe
between two parallel planes is equal to the lateral surface area of the corresponding
slice of the circumscribing prism. The area is proportional to the distance between
the parallel cutting planes.

(b) The total surface area of an Archimedean globe is equal to the lateral surface
area of the circumscribing prism, which is four times the area of the equatorial base.

This result, discovered by a heuristic argument, can be given a rigorous proof
by using the method of exhaustion or integration. In the limiting case when the
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(a) (b) (c)

r a

a

b

b

b

lateral area A area A area ab

Figure 5.9: The curved face of a slice of a thin Archimedean shell in (a) unwrapped
so that it is flat as in (b). The volume of the shell is very nearly equal to the volume
of the rectangular slab in (c) of the same thickness.

circumscribing prism becomes a circular cylinder, we obtain:

Corollary 5.2. The lateral surface area of a spherical slice cut by two parallel
planes is equal to the lateral surface area of the corresponding slice of the circum-
scribing cylinder.

Using a different approach, Archimedes found the surface area of a sphere [47,
p. 39, Proposition 33], and the surface area of a segment of a sphere [47, p. 53,
Proposition 43]. The statement for the segment is particularly elegant because it
involves only one parameter, the slant height of a cone inscribed in the segment.
Proposition 43 states that the surface area of the segment is equal to that of a circle
whose radius is the slant height of the cone inscribed in the segment. This result
holds more generally for the surface area of a segment of an Archimedean dome (the
portion of the surface of the dome above a plane parallel to the equatorial plane, as
shown in Figure 5.10a).

(a) (b) 

slant height slant height 

Figure 5.10: The surface area of a segment of a dome is equal to that of a polygon
similar to the base.
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Theorem 5.6. The surface area of a segment of an Archimedean dome is equal to
that of a polygon similar to the polygonal base circumscribing a circle whose radius
is the slant height of the corresponding inscribed pyramid.

Proof. By Theorem 5.5(a), the surface area of a segment of height h is equal
to hp, where p is the perimeter of the polygonal base. Let a be the radius of the
equator, and let s denote the slant height of the inscribed pyramid (Figure 5.10a).
Then s is the hypotenuse of a right triangle with h as one leg, and s is also one leg of
a similar right triangle with hypotenuse 2a. Therefore 2a/s = s/h, or s/a = 2h/s.
But s/a is the similarity ratio of similar polygons circumscribing circles of radii
s and a, respectively. The polygon circumscribing the circle of radius s is shown
in Figure 5.10b. If ps denotes its perimeter, then its area is sps/2. By similarity,
ps = (s/a)p = (2h/s)p, so sps/2 = hp, as required. The relation s/a = 2h/s for the
sphere also proves Proposition 43.

Theorem 5.4(b) states that the volume of an Archimedean globe is two-thirds
the volume of the smallest circumscribing prism. Now we prove the companion
theorem for surface area:

Theorem 5.7. The surface area of an Archimedean globe is two-thirds the total
surface area of its circumscribing prism.

Proof. By Theorem 5.5(b), the total surface area of an Archimedean globe is
equal to the lateral surface area of the smallest circumscribing prism. Therefore to
prove Theorem 5.7 it suffices to show that each polygonal base of the prism has area
equal to one-fourth the lateral surface area of the prism. Then the areas of the two
bases plus the lateral surface area is three-halves the surface area of the inscribed
Archimedean globe.

The lateral surface of the prism can be unwrapped to form a rectangle of area
2ap,where p is the perimeter of the base, and 2a is the altitude of the prism. The
polygonal base can be divided into right triangles of the type shown in Figure 5.8b,
each with altitude a and area abk/2, where bk is the base of the triangle. The sum
of the bk is equal to p, and the area of the polygonal base is ap/2 = (2ap)/4, as
required.

When the polygonal base approaches a circle as a limit we obtain:

Corollary 5.3. (Archimedes) The surface area of a sphere is two-thirds the to-
tal surface area of its circumscribing cylinder, which is four times the area of the
equatorial disk.

Theorems 5.4 and 5.7 provide new proofs and significant generalizations of the
landmark discoveries of Archimedes mentioned in the opening sentence of this chap-
ter. As already remarked, Archimedes knew that the volume of intersection of two
perpendicular cylinders is two-thirds that of the smallest cube that contains it, but
apparently he never considered the corresponding surface areas, which, by Theorems
5.4 and 5.7, are in the same ratio. Finding the volume of two intersecting cylin-
ders has become a standard exercise in calculus texts, but, except for the case of a
sphere, we have not seen the corresponding area relation of Theorem 5.7 discussed
in the literature.

We turn next to two surprising consequences of Theorem 5.5.
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5.7 INCONGRUENT SOLIDS WITH EQUAL VOLUMES AND EQUAL
SURFACE AREAS

Figure 5.11a shows a horizontal slice of an Archimedean shell between two parallel
planes that cut both the inner and outer domes. Figure 5.11b shows the correspond-
ing prismatic slice of the same constant thickness. The surface of each slice consists
of four components: (1) an upper horizontal polygonal ring, (2) a lower horizontal
polygonal ring, (3) an outer lateral surface, and (4) an inner lateral surface. We
now prove:

Theorem 5.8. The two slices so described have equal volumes, and corresponding
components of the surface of each slice have equal areas. Consequently the two slices
have equal total surface areas.

(a) (b)

Figure 5.11: Two incongruent solids of equal volume with corresponding area com-
ponents of equal areas.

Proof. The volumes are equal by Theorem 5.4(b). From the analysis leading to
Theorem 5.4, the upper horizontal polygonal rings have equal areas, as do the lower
horizontal polygonal rings. By Theorem 5.5(a), the two outer lateral surface areas
are equal, as are the two inner lateral surface areas.

Theorem 5.8 provides several infinite families of pairs of incongruent solids that
have equal volumes and equal total surface areas. One family is obtained by varying
the number of edges or the shape of the equatorial circumscribed polygon, a second
by varying the distance between the parallel cutting planes, and a third by varying
the distance of one cutting plane from the equatorial plane. Incidentally, the solids
in Figure 5.11 resemble washers commonly used, for example, in plumbing fixtures.

5.8 QUADRATURE OF THE SINE CURVE

The next surprising consequence of Theorem 5.5 is the quadrature of the sine curve.
A point on a unit circle that subtends an angle of x radians has rectangular coor-
dinates (cosx, sinx). Figure 5.12a shows this circle as the base of a right circular
cylinder from which a wedge has been cut by a plane through a diameter inclined
at an angle of 45o with the base. The point on the cutting plane directly above the
point (cosx, sinx) on the base has altitude sinx. In Figure 5.12b the lateral surface
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(1,0)

y = sin x

(cos x, sin x)

y = sin x

0 x

(a) (b)

π

Figure 5.12: Generating a sine curve by cutting a circular cylinder by an inclined
plane through a diameter.

of the wedge is unwrapped to form a region lying above an interval of length π (half
the circumference of the circle), so the upper boundary of the region has cartesian
equation y = sinx. The front half of the wedge in Figure 5.12a can be regarded
as a wedge of an Archimedean dome that has been tipped over so that its circular
face is in a horizontal plane with the top of the dome at the point with rectangular
coordinates (1, 0). The base of the wedge is an isosceles right triangle in a vertical
plane. By Theorem 5.5(a) the lateral surface area of any portion of the wedge cut

(a) (b) 

cos x
x

sin
x

1 − cos x

1 1 1 1

1

Figure 5.13: The lateral area of a portion of the dome is equal to that of a rectan-
gular face of the smallest circumscribing prism.

by a plane parallel to the base of the dome is equal to the area of the corresponding
rectangular face cut from a slice of the smallest circumscribing prismatic shell. If
the cutting plane is at a distance cos x from the base of the dome, as shown in
Figure 5.13a, the rectangular face has base 1 and altitude 1− cosx, as shown in
Figure 5.13b. Thus, by elementary geometry, we obtain the quadrature of the sine
curve if 0 ≤ x ≤ π/2, but, of course, the result holds for all real x.

Corollary 5.4. The area of the region under the sine curve and above the interval
[0, x] is equal to that of a rectangle of base 1 and altitude 1− cosx.

In calculus notation, ∫ x

0

sin t dt = 1− cosx.
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5.9 APPLICATION TO CENTROIDS

The method of punctured containers determines the volume of a curved solid in
terms of that of a circumscribed punctured prismatic solid whose volume is known
or can be easily calculated because it is bounded by plane faces. We cut both
solids by horizontal planes that produce cross sections of equal area A(x) at an
arbitrary height x above a fixed base. Then we invoke the slicing principle to equate
the volumes of the solids cut off between two horizontal planes. In the language
of calculus, the value of the integral

∫ x2

x1
A(x) dx is the volume of the portion of

each solid cut by all horizontal planes as x varies over some interval [x1, x2]. (See
[1; Theorem 2.7].) Because the integrand A(x) is the same for both solids, the
corresponding volumes are equal.

Instead of integrating the common cross sectional area A(x) of two solids to find
that their volumes are equal, we could just as well integrate any function f(x,A(x)),
and the integral over [x1, x2] would be the same for both solids. For example, the
integral

∫ x2

x1
xA(x) dx is the first moment of the area function A(x) over [x1, x2], and

this integral divided by the integral
∫ x2

x1
A(x) dx gives the altitude of the centroid

of the slice of each solid between the planes x = x1 and x = x2.

Thus, not only are the volumes of the slices equal, but also the altitudes of
their centroids are equal. Moreover, for a given k, the moments

∫ x2

x1
xkA(x) dx with

respect to the plane of the base are equal for both slices. In other words, we have:

Theorem 5.9. With respect to the equatorial plane and a power k, the kth power
moments of corresponding slices of an Archimedean shell and its circumscribing
punctured prismatic shell are equal.

We conclude this section with some examples of centroids that can be determined
using Theorem 5.9.

Consider a shell between two concentric Archimedean domes with radii r and a,
where r < a. Theorem 5.9 enables us to locate the centroid of a portion of the shell
between two planes parallel to the base that cut both domes. The corresponding
slice of a prismatic shell of constant thickness cut by the same planes has its centroid
located midway between the two parallel planes. Therefore this is also the height
of the centroid of the slice. Hence we have:

Theorem 5.10. The centroid of a slice of an Archimedean shell between two hori-
zontal planes that cut both domes lies midway between the two planes on the altitude
through the common center. In particular, the slice of the shell between the equato-
rial plane and the plane whose distance from the center is the radius r of the inner
dome has its centroid at a distance r/2 above the equator.

In the limiting case when r → a (so the thickness of the shell tends to 0), we
find the following corollary of Theorem 5.10:

Corollary 5.5. The centroid of the surface of an Archimedean dome is at the
midpoint of its altitude.
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In the limiting case when the circumscribing equatorial polygon becomes a circle,
this yields a known result for a hemisphere that can be found using surface integrals
(see [2; p. 431]). The same limiting case of Theorem 5.10 gives:

Corollary 5.6. The centroid of the surface of a slice of a sphere (in particular, of
a segment), is midway between the two parallel cutting planes.

PART 2: GENERALIZED ARCHIMEDEAN DOMES

The rest of this chapter extends the method of punctured containers by applying
it first to general dome-like structures far removed from Archimedean domes, and
then to domes with nonuniform mass distributions. The generality of the structures
that are amenable to the method of punctured containers is demonstrated by the
following examples.

5.10 REDUCIBLE SOLIDS

Cut an Archimedean dome and its punctured container into horizontal slices and
assign to each pair of slices the same constant density, which can differ from pair
to pair. Because the masses are equal, slice by slice, the total mass of the dome is
equal to that of its punctured container, and the centers of mass are at the same
height above the base. Or, cut the dome and its punctured container into wedges
by vertical half planes through the polar axis, and assign to each pair of wedges
the same constant density, which can differ from pair to pair. Again, the masses
are equal, wedge by wedge, so the total mass of the dome is equal to that of its
punctured container, and the centers of mass are at the same height. Or, imagine
an Archimedean dome divided into thin concentric shell-like layers, like those of an
onion, each assigned a constant density, which can differ from layer to layer. The
punctured container is correspondingly divided into coaxial prismatic layers, each
assigned the same constant density as the corresponding shell layer. In this case
the masses are equal, shell by shell, so the total mass of the dome is equal to that
of its punctured container, and again the centers of mass are at the same height.
We are interested in solids with pyramidically punctured prismatic containers that
share the following property with Archimedean domes:

Definition (Reducible solid). A solid is called reducible if an arbitrary horizon-
tal slice of the solid and its punctured container have equal volumes, equal masses,
and centers of mass at the same height above the base.

Every uniform Archimedean dome is reducible, and in Section 5.13 we exhibit
some nonuniform Archimedean domes that are reducible.

The method of punctured containers enables us to reduce both volume and mass
calculations of domes to those of simpler prismatic solids, thus generalizing the pro-
found volume relation between the sphere and cylinder discovered by Archimedes.
Another famous result of Archimedes [47; Method, Proposition 6] states that the
centroid of a uniform solid hemisphere divides its altitude in the ratio 3:5. Using
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the method of punctured containers we show that the same ratio holds for uniform
Archimedean domes and other more general domes (Theorem 5.17), and we also ex-
tend this result to the center of mass of a more general class of nonuniform reducible
domes (Theorem 5.18).

In Section 5.11 we dilate an Archimedean dome in a vertical direction to produce
a dome with elliptic profiles, then we replace its base by an arbitrary polygon,
not necessarily convex. This leads naturally to domes with arbitrary curved bases.
Such domes and their punctured prismatic containers have equal volumes and equal
moments relative to the plane of the base because of the slicing principle, but if
the domes do not circumscribe hemispheres the corresponding lateral surface areas
will not be equal. The remainder of this chapter relaxes the requirement of equal
surface areas and concentrates on solids having the same volume and moments as
their punctured prismatic containers. Section 5.11 treats reducible domes and shells
with polygonal bases, then Section 5.12 extends the results to domes with curved
bases, and formulates reducibility in terms of mappings that preserve volumes and
moments.

The full power of the method of punctured containers is revealed by the treat-
ment of nonuniform mass distributions in Section 5.13. Problems of calculating
masses and centroids of nonuniform wedges, shells, and their slices with elliptic
profiles, including those with cavities, are reduced to those of simpler punctured
prismatic containers. Section 5.14 gives explicit formulas for volumes and centroids,
and Section 5.15 reveals the surprising fact that uniform domes with elliptic profiles
are essentially the only solids that are reducible to their punctured containers.

5.11 POLYGONAL ELLIPTIC DOMES AND SHELLS

To easily construct a more general class of reducible solids, start with any Archime-
dean dome and dilate it and its punctured container in a vertical direction by the
same scaling factor λ > 0. The circular cylindrical wedges in Figure 5.5a become
elliptic cylindrical wedges, as typified by the example in Figure 5.14a. A circular
arc of radius a is dilated into an elliptic arc with horizontal semiaxis a and vertical
semiaxis λa. Dilation changes the altitude of the prismatic wedge from a to λa
(Figure 5.14b). The punctured container is again a prism punctured by a pyramid.
Each horizontal plane at a given height above the base cuts both the elliptic wedge
and the corresponding punctured prismatic wedge in cross sections of equal area.
Consequently, any two horizontal planes cut both solids in slices of equal volume.

If the elliptic and prismatic wedges have the same constant density, then they
also have the same mass, and their centers of mass are at the same height above
the base. Thus we have:

Theorem 5.11. Every uniform elliptic cylindrical wedge is reducible.

Now assemble a finite collection of nonoverlapping elliptic cylindrical wedges
with their horizontal semi axes, possibly of different lengths, in the same horizontal
plane, but with a common vertical semiaxis, which meets the base at a common
point O called the center. We assume that the density of each component wedge
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(a) (b)

Figure 5.14: (a) Vertical dilation of a cylindrical wedge by a factor λ. (b) Its
punctured prismatic container.

is constant, although this constant may differ from component to component. For
each wedge, the punctured circumscribing prismatic container with the same density
is called its prismatic counterpart. The punctured containers assembled in the same
manner produce the counterpart of the wedge assemblage. We call an assemblage
nonuniform if some of its components can have different constant densities. This
includes the special case of a uniform assemblage where all components have the
same constant density. Because each wedge is reducible we get:

Corollary 5.7. A nonuniform assemblage of elliptic cylindrical wedges is reducible.

Polygonal elliptic domes.

Because the base of a finite assemblage is a polygon (a union of triangles with a
common vertex O) we call the assemblage a polygonal elliptic dome. The polygonal
base need not circumscribe a circle and it need not be convex. Corollary 5.7 gives
us:

Corollary 5.8. The volume of a polygonal elliptic dome is equal to the volume of
its circumscribing punctured prismatic container, that is, two-thirds the volume of
the unpunctured prismatic container, which is the area of the base times the height.

In the special limiting case when the equatorial polygonal base of the dome
turns into an ellipse with center at O, the dome becomes half an ellipsoid, and the
circumscribing prism becomes an elliptic cylinder. In this limiting case, Corollary
5.8 reduces to:

Corollary 5.9. The volume of an ellipsoid is two-thirds that of its circumscribing
elliptic cylinder.

In particular, we get Archimedes’ spheroid result [44; Method, Proposition 3]:

Corollary 5.10. (Archimedes) The volume of an ellipsoid of revolution is two-
thirds that of its circumscribing circular cylinder.
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Polygonal elliptic shells.

A polygonal elliptic shell is the solid between two concentric similar polygonal el-
liptic domes. From Theorem 5.11 we obtain:

Theorem 5.12. The following solids are reducible:

(a) A uniform polygonal elliptic shell.

(b) A wedge of a uniform polygonal elliptic shell.

(c) A horizontal slice of a wedge of type (b).

(d) A nonuniform assemblage of shells of type (a).

(e) A nonuniform assemblage of wedges of type (b).

(f) A nonuniform assemblage of slices of type (c).

By using as building blocks horizontal slices of wedges cut from a polygonal
elliptic shell, we can see intuitively how one might construct, from such building
blocks, very general polygonal elliptic domes that are reducible and have more or
less arbitrary mass distribution. By considering limiting cases of polygonal bases
with many edges, and building blocks with very small side lengths, we can imagine
elliptic shells and domes whose bases are more or less arbitrary plane regions, for
example, elliptic, parabolic, or hyperbolic segments. The next section describes an
explicit construction of general reducible domes with curvilinear bases.

5.12 GENERAL ELLIPTIC DOMES

Replace the polygonal base by a plane region bounded by a curve whose polar
coordinates (r, θ) relative to a center O satisfy an equation r = ρ(θ), where ρ is a
piecewise continuous function, and θ varies over an interval of length 2π. Above
this base we build an elliptic dome as follows. First, the altitude of the dome is
a segment of height h > 0 along the polar axis perpendicular to the base at O.
We assume that each vertical half plane through the polar axis at angle θ cuts the
surface of the dome along a quarter of an ellipse with horizontal semiaxis ρ(θ) and
the same vertical semiaxis h, as in Figure 5.15a.

The ellipse will be degenerate at points where ρ(θ) = 0. Thus, an elliptic wedge
is a special case of an elliptic dome. When ρ(θ) > 0, the cylindrical coordinates
(r, θ, z) of points on the surface of the dome satisfy the equation of an ellipse:

( r

ρ(θ)

)2
+

( z
h

)2
= 1. (5.1)

The dome is circumscribed by a cylindrical solid of altitude h whose base is con-
gruent to that of the dome (Figure 5.15b). Incidentally, we use the term “cylindrical
solid” with the understanding that the solid is a prism when the base is polygonal.

Each point (r′, θ′, z′) on the lateral surface of the cylinder in Figure 5.15b is
related to the corresponding point (r, θ, z) on the surface of the dome by

θ′ = θ, z′ = z, r′ = ρ(θ).
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  (  )

Figure 5.15: An elliptic dome (a), and its circumscribing punctured prismatic con-
tainer (b).

From this cylindrical solid we remove a conical solid whose surface points have
cylindrical coordinates (r′′, θ, z), where z/h = r′′/ρ(θ), or

r′′ = zρ(θ)/h.

When z = h, this becomes r′′ = ρ(θ), so the base of the cone is congruent to
the base of the elliptic dome. When the base is polygonal, the conical solid is a
pyramid.

More reducible domes.

The polar axis of an elliptic dome depends on the location of center O. For a curvi-
linear base, we can move O to any point inside the base, or even to the boundary.
Moving O will change the function ρ(θ) describing the boundary of the base, with
a corresponding change in the shape of the ellipse determined by (5.1). Thus, the
construction generates not one, but infinitely many elliptic domes with a given base.

For any such dome, we can generate another family as follows: Imagine the
dome and its prismatic counterpart made up of very thin horizontal layers, like
two stacks of cards. Deform each solid by a horizontal translation and rotation of
each horizontal layer. The shapes of the solids will change, but their cross-sectional
areas will not change. In general, such a deformation may alter the shape of each
ellipse on the surface to some other curve, and the deformed dome will no longer
be elliptic. The same deformation applied to the prismatic counterpart will change
the punctured container to a nonprismatic punctured counterpart. Nevertheless, all
the results of this chapter (with the exception of Theorem 5.21) will hold for such
deformed solids and their counterparts.

However, if the deformation is a linear shearing that leaves the base fixed but
translates each layer by a distance proportional to its distance from the base, then

ρ θ   (  )ρ θ
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straight lines are mapped onto straight lines and the punctured prismatic solid is
deformed into another prism punctured by a pyramid with the same base. The
correspondingly sheared dome will be elliptic because each elliptic curve on the
surface of the dome is deformed into an elliptic curve. To visualize a physical
model of such a shearing, imagine a general elliptic dome and its counterpart sliced
horizontally to form stacks of cards. Pierce each stack by a long pin along the polar
axis, and let O be the point where the tip of the pin touches the base. Tilting the
pin away from the vertical polar axis, keeping O fixed, results in horizontal linear
shearing of the stacks and produces infinitely many elliptic domes, all with the same
polygonal base. The prismatic containers are correspondingly tilted, and the domes
are reducible.

Reducibility mapping.

For an elliptic dome, we call the corresponding circumscribing punctured cylindrical
solid its punctured container. Our goal is to show that every uniform elliptic dome
is reducible. This will be deduced from a more profound property, stated below in
Theorem 5.13. It concerns a mapping that relates elliptic domes and their punctured
containers.

To determine the mapping, regard the dome as a collection of layers of similar
elliptic domes, like layers of an onion. Choose O as the center of similarity, and for
each scaling factor μ ≤ 1, imagine a surface E(μ) such that a vertical half plane
through the polar axis at angle θ intersects E(μ) along a quarter of an ellipse with
semiaxes μρ(θ) and μh. When ρ(θ) > 0, the coordinates r and z of points on this
similar ellipse satisfy ( r

μρ(θ)

)2
+

( z

μh

)2
= 1. (5.2)

Regard the punctured container as a collection of coaxial layers of similar punc-
tured cylindrical surfaces C(μ). It is easy to relate the cylindrical coordinates
(r′, θ′, z′) of each point on C(μ) to the coordinates (r, θ, z) of the corresponding
point on E(μ). First, we have

θ′ = θ, z′ = z, r′ = μρ(θ). (5.3)

From (5.2) we find r2 + z2ρ (θ)
2
/h2 = μ2ρ(θ)2 , so (5.3) becomes

θ′ = θ, z′ = z, r′ =
√

r2 + z2ρ (θ)
2
/h2. (5.4)

The three equations in (5.4), which are independent of μ, describe a mapping from
each point (r, θ, z) of the solid elliptic dome, not on the polar axis, to the corre-
sponding point (r′, θ′, z′) on its punctured container. On the polar axis, r = 0 and
θ is undefined.

Using (5.2) in (5.4) we obtain (5.3), so points on the ellipse described by (5.2) are
mapped onto the vertical segment of length μh through the base point (μρ(θ), θ).
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Preservation of volumes.

Now we show that the mapping (5.4) preserves volumes. In the (r, θ, z) system
the volume element is r dr dθ dz, while that in the (r′, θ′, z′) system is r′dr′dθ′dz′.
From (5.4) we have

(r′)2 = r2 + z2ρ (θ)
2
/h2

which, for fixed z and θ, gives r′dr′ = rdr. From (5.4) we also have dθ′ = dθ and
dz′ = dz, so the volume elements are equal:

r dr dθ dz = r′dr′dθ′dz′.

This proves:

Theorem 5.13. The mapping (5.4), from a general elliptic dome to its punctured
prismatic container, preserves volumes. In particular, every uniform elliptic dome
is reducible.

As an immediate consequence of Theorem 5.13 we obtain:

Corollary 5.11. The volume of a general elliptic dome is equal to the volume of
its circumscribing punctured cylindrical container, that is, two-thirds the volume of
the circumscribing unpunctured cylindrical container which is simply the area of the
base times the height.

The same formulas show that for a fixed altitude z, we have r dr dθ = r′dr′dθ′.
In other words, the mapping also preserves areas of horizontal cross sections cut
from the elliptic dome and its punctured container. This also implies Corollary 5.11
because of the slicing principle.

Lambert’s classical mapping as a special case.

Our mapping (5.4) generalizes Lambert’s classical mapping [31], which is effected
by wrapping a tangent cylinder about the equator, and then projecting the surface
of the sphere onto the cylinder by rays through the axis that are parallel to the
equatorial plane. Lambert’s mapping takes points on the spherical surface (not at
the north or south pole) and maps them onto points on the lateral cylindrical surface
in a way that preserves areas. The mapping (5.4) takes each point of a solid sphere
(except the polar axis) and maps it onto a point of the punctured solid cylinder in
a way that preserves volumes. Moreover, analysis of a thin shell (similar to that
in Section 5.6) shows that our mapping also preserves areas when the surface of an
Archimedean dome is mapped onto the lateral surface of its prismatic container.
Consequently, we have:

Theorem 5.14. The mapping (5.4), from the surface of an Archimedean dome
onto the lateral surface of its prismatic container, preserves areas.

In the limiting case when the Archimedean dome becomes a hemisphere we get:

Corollary 5.12. (Lambert) The mapping (5.4), from the surface of a sphere to the
lateral surface of its tangent cylinder, preserves areas.

If the hemisphere in the limiting case has radius a, it is easily verified that (5.4)
reduces to Lambert’s mapping: θ′ = θ, z′ = z, r′ = a.
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5.13 NONUNIFORM ELLIPTIC DOMES

The mapping (5.4) takes each point P of an elliptic dome and carries it onto a point
P ′ of its punctured container. Imagine an arbitrary mass density assigned to P , and
assign the same mass density to its image P ′. If a set of points P fills out a portion
of the dome of volume v and total mass m, say, then the image points P ′ fill out a
solid, which we call the counterpart, having the same volume v and the same total
mass m. This can be stated as an extension of Theorem 5.13:

Theorem 5.15. Any portion of a general nonuniform elliptic dome is reducible.

By analogy with Theorem 5.13, we can say that the mapping (5.4) with weights
also preserves masses.

Next we describe specific assignments of variable mass density.

Elliptic shells and elliptic fibers.

A simple way of doing this is to divide a general elliptic dome into thin concentric
shell-like layers, like those of an onion, each assigned a constant density, which can
differ from layer to layer. The punctured container is correspondingly divided into
coaxial prismatic layers, each assigned the same constant density as the correspond-
ing shell layer. In this case the masses are equal shell by shell, the total mass of the
dome is equal to that of its punctured container, and again the centers of mass are
at the same height.

More precisely, we exploit the structure of the dome as a collection of similar
domes, as follows.

Take a general elliptic dome of altitude h, and denote its elliptic surface by E(1).
Scale E(1) by a positive factor μ < 1 to produce a similar elliptic surface E(μ). The
region between two surfaces E(μ) and E(ν) is called an elliptic shell.

h h

r
μr

μhμh

(a) (b)

Figure 5.16: Elliptic shell (a), and its counterpart (b).

Each base in the equatorial plane is bounded by portions of two curves with
polar equations r = μρ(θ) and r = νρ(θ), and two segments with θ = θ1 and
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θ = θ2 > θ1. If θ2 − θ1 < π the shell has the shape of a wedge subtending an angle
θ2 − θ1. A wedge with a small angle is said to be sharp.

Figure 5.16a shows an example of an elliptic shell between E(1) and E(μ) , and
Figure 5.16b shows its counterpart. Each base in the equatorial plane is bounded
by portions of two curves with polar equations r = ρ(θ) and r = μρ(θ), and two
segments with θ = θ1 and θ = θ2.

An elliptic shell between E(1) and E(μ) is regarded as an elliptic dome with a
cavity, or, equivalently, as an elliptic dome with density 0 everywhere inside E(μ).

h 

μh μh 

μr 

r =    

h 

    (  )

Figure 5.17: Elliptic fiber element (a) and its counterpart (b).

The shaded region in Figure 5.17a is a sharp wedge of an elliptic shell. The
outer curved face lies on surface E(μ) and the inner face lies on another surface,
say E(ν), where 0 < ν < μ. If ν is nearly equal to μ, we call the region an elliptic
fiber. Figure 5.17b shows the counterpart of this fiber, a vertical prismatic solid. If
the fiber is uniform, so is its counterpart, with the same constant density; they have
the same mass, and their centers of mass are at the same height above the base.

Elliptic fibers can be used as building blocks to construct many types of nonuni-
form elliptic domes with variable density. We simply assign to each fiber a constant
density, which can differ from fiber to fiber. For example, assemblages of fibers
can produce elliptic shells of variable density inherited from the fibers. These can
be assembled to form nonuniform elliptic domes. By using fibers with arbitrarily
small bases, we can assign arbitrary mass density to the points of a general elliptic
dome and its punctured container so that any portion of the dome is reducible. In
particular, the portion and its counterpart have equal mass.

In this way, by a limiting process, we produce a reducible nonuniform elliptic
dome. We call such a dome fiber-elliptic.

An equivalent procedure is to assign an arbitrary mass density f(r, θ) to the
base of a dome. Consider a thin fiber that emanates from a point (μρ(θ), θ) on the

ρ θ r =    (  )ρ θ
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base, and assign density f(μρ(θ, θ) to each point of the fiber. In other words, the
mass density along the elliptic fiber has a constant value inherited from the point
at which the fiber meets the base. Of course, the constant may differ from point
to point on the base. The elliptic fiber maps into a vertical fiber in the punctured
container (of length μh, where h is the altitude of the dome), with the same mass
density f(μρ(θ), θ).

An important special case occurs when the assigned density is constant along
the base curve r = ρ(θ) and along each curve r = μρ(θ) similar to the base curve,
the density depending only on μ. Then each surface E(μ) will have constant density.
We call domes with this assignment of mass density shell-elliptic. For fiber-elliptic
and shell-elliptic domes, horizontal slices cut from any portion of the dome and its
counterpart have equal masses, and their centers of mass are at the same height
above the base, as a consequence of Theorem 5.15. Thus, we have:

Corollary 5.13. Any portion of a fiber-elliptic dome is reducible. Any portion of
a shell-elliptic dome is reducible. In particular, a sphere with spherically symmetric
mass distribution is reducible.

In the same way, if we build a nonuniform shell-elliptic dome with a finite number
of similar elliptic shells, each with its density inherited from the base, then any
horizontal slice pierced by the cavity has its center of mass midway between the
two horizontal cutting planes. Moreover, the following theorem holds for every such
shell-elliptic dome.

Theorem 5.16. A horizontal slice pierced by the cavity of a nonuniform shell-
elliptic dome has volume and mass equal, respectively, to those of its prismatic
counterpart. Each volume and mass is independent of the height above the base and
each is proportional to the thickness of the slice. Consequently, the center of mass
of such a slice lies midway between the two cutting planes.

Corollary 5.14. (Sphere with cavity) For a spherically symmetric distribution
of mass inside a sphere with a concentric cavity, any slice between parallel planes
pierced by the cavity has volume and mass proportional to the thickness of the slice,
and is independent of the location of the slice.

Corollary 5.14 implies that the one-dimensional vertical projection of the den-
sity is constant along the cavity. This simple result has profound consequences in
tomography, which deals with the inverse problem of reconstructing spatial density
distributions from a knowledge of their lower-dimensional projections. Details of
this application will appear later, in Chapter 15.

The reducibility properties of an elliptic dome also hold for the more general case
in which we multiply the mass density f(μρ(θ), θ) by any function of z. Such change
of density could be imposed, for example, by an external field (such as atmospheric
density in a gravitational field that depends only on height z). Consequently, not
only are the volume and mass of any portion of this type of nonuniform elliptical
dome equal to those of its counterpart, but the same is true for all moments with
respect to the horizontal base.
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5.14 FORMULAS FOR VOLUME AND CENTROID

This section uses reducibility to give formulas for volumes and centroids of various
building blocks of elliptic domes with an arbitrary curvilinear base.

Volume of an elliptic shell.

We begin with the simplest case. Cut a piece (call it a wedge) of an elliptic dome
of altitude h by two vertical planes through the polar axis, then remove a similar
wedge scaled by a factor μ, where 0 < μ < 1, as shown in Figure 5.17a. Assume
the unpunctured cylindrical container in Figure 5.17b has volume V . By Corollary
5.11 the outer wedge has volume 2V/3, and the similar inner wedge has volume
2μ3V/3, so the volume v of the shell element and its prismatic counterpart is the
difference

v =
2

3
V (1− μ3). (5.5)

Now, V = Ah, where A is the area of the base of both the elliptic wedge and
its container. The base of the elliptic shell and its unpunctured container have area
B = A− μ2A, so A = B/(1− μ2), V = Bh/(1− μ2), and (5.5) can be written as

v =
2

3
Bh

1− μ3

1− μ2
=

2

3
Bh(1 +

μ2

1 + μ
). (5.6)

This also holds for the total volume of an assemblage of elliptic shells with a
given h and μ, with B representing the total base area. The product Bh is the
volume of the corresponding unpunctured cylindrical container of altitude h, so
(5.6) gives us

vμ(h) =
2

3
vcyl(1 +

μ2

1 + μ
), (5.7)

where vμ(h) is the volume of the assemblage of elliptic shell elements and of the
counterpart, and vcyl is the volume of its unpunctured cylindrical container.

When μ = 0 in (5.7), the assemblage of elliptic wedges has volume v0(h)=
2vcyl/3, so we can write (5.7) in the form

vμ(h) = v0(h)(1 +
μ2

1 + μ
), (5.8)

where v0(h) is the volume of the outer dome of the assemblage and its counterpart.
If μ approaches 1 the shell becomes very thin, the ratio μ2/ (1 + μ) approaches 1/2,
and (5.7) shows that vμ(h) approaches vcyl. In other words, a very thin elliptic
shell element has volume very nearly equal to that of its very thin unpunctured
cylindrical container. An Archimedean shell has constant thickness equal to that of
the prismatic container, so the lateral surface area of an assemblage of Archimedean
wedges is equal to the lateral surface area of its prismatic container (see Theorem
5.5b). This argument does not apply to a nonspherical elliptic shell because it does
not have constant thickness.

Next we derive a formula for the height of the centroid of a uniform elliptic
wedge above the plane of its base.
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162 Chapter 5. PUNCTURED CONTAINERS

Theorem 5.17. A uniform elliptic wedge or dome of altitude h has volume two-
thirds that of its unpunctured prismatic container. Its centroid is located at height
c above the plane of the base, where

c =
3

8
h. (5.9)

Proof. It suffices to prove (5.9) for the prismatic counterpart. For a prism of
altitude h, the centroid is at a distance h/2 above the plane of the base. For a
cone or pyramid with the same base and altitude it is known that the centroid is
at a distance 3h/4 from the vertex. To determine the height c of the centroid of a
punctured prismatic container above the plane of the base, assume the unpunctured
prismatic container has volume V and equate moments to get

c(
2

3
V ) +

3h

4
(
1

3
V ) =

h

2
V,

from which we find (5.9). By Theorem 5.15, the centroid of the inscribed elliptic
wedge is also at a height 3h/8 above the base. The result is also true for any uniform
elliptic dome formed as an assemblage of wedges.

Equation (5.9) is equivalent to saying, in the style of Archimedes, that the
centroid divides the altitude in the ratio 3:5.

Corollary 5.15. (a) The centroid of a uniform Archimedean dome divides its al-
titude in the ratio 3:5.

(b) (Archimedes) The centroid of a uniform hemisphere divides its altitude in
the ratio 3:5.

Formula (5.9) is obviously true for the center of mass of a nonuniform assemblage
of elliptic wedges of altitude h, each with its own constant density.

Centroid of an elliptic shell.

Now we can find, for an elliptic shell between E(1) and E(μ), the height cμ(h)
of its centroid above the plane of its base. The volume and centroid results are
summarized as:

Theorem 5.18. A nonuniform assemblage of elliptic shells with common altitude
h and scaling factor μ has volume vμ(h) given by (5.8). The height cμ(h) of the
centroid above the plane of its base is given by

cμ(h) =
3

8
h(1 +

μ3

1 + μ+ μ2
). (5.10)

Proof. Consider first a single uniform elliptic shell element. It suffices to do the
calculation for the prismatic counterpart. The inner wedge has altitude μh, so by
(5.9) its centroid is at height 3μh/8. The centroid of the outer wedge is at height
3h/8. If the outer wedge has volume Vouter, the inner wedge has volume μ3Vouter,
and the shell element between them has volume (1− μ3)Vouter. Equating moments
and canceling the common factor Vouter we find
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(
3

8
μh)μ3 + cμ(h)(1− μ3) =

3

8
h,

from which we obtain (5.10), which also holds for any nonuniform assemblage of
elliptic shell elements with the same h and μ, each of constant density, although
the density can differ from element to element.

When μ = 0, (5.10) gives c0(h) = 3h/8.

When μ → 1, the shell becomes very thin and the limiting value of cμ(h) in
(5.10) is h/2. This also follows from Theorem 5.16 when the shell is very thin and
the slice includes the entire dome. It is also consistent with Corollary 5.5, which
states that the centroid of the surface of an Archimedean dome is at the midpoint
of its altitude.

We leave it as an exercise for the reader to show that the height cμν(h) of the
centroid of a shell between E(μ) and E(ν) is equal to

cμν(h) =
3

8
h(ν +

μ3

ν2 + νμ+ μ2
).

Centroid of a slice of a uniform elliptic dome.

More generally, we can determine the centroid of a slice of altitude z of a uniform
elliptic wedge. By reducing this calculation to that of the prismatic counterpart,
shown in Figure 5.18, the analysis becomes simple. For clarity, the base in Figure
5.18 is shown as a triangle, but the same argument applies to a more general base

3z/4
c(z)

h

z

Figure 5.18: Calculating the centroid of a slice of altitude z cut from a wedge of
altitude h.

like that in Figure 5.17. The slice in question is obtained from a prism of altitude
z and volume V (z) = λV , where V is the volume of the unpunctured prismatic
container of altitude h, and λ = z/h. The centroid of the slice is at an altitude z/2
above the base. We remove from this slice a pyramidal portion of altitude z and
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volume v(z) = λ3V/3, whose centroid is at an altitude 3z/4 above the base. The
portion that remains has volume

V (z)− v(z) = (λ− 1

3
λ3)V (5.11)

and centroid at altitude c(z) above the base.
To determine c(z), equate moments to obtain

3z

4
v(z) + c(z)(V (z)− v(z)) =

z

2
V (z),

which gives

c(z) =
z
2V(z) − 3z

4 v(z)

V (z)− v(z)
.

Because of the relations V (z) = λ3V/3, and v(z) = λ3V/3, we obtain:

Theorem 5.19. A slice of altitude z cut from a uniform elliptic wedge of altitude h
has volume given by (5.11), where λ = z/h and V is the volume of the unpunctured
prismatic container. The height c(z) of the centroid is given by

c(z) =
3

4
z
2− λ2

3− λ2
. (5.12)

When z = h then λ = 1 and this reduces to (5.9). For small z the right member
of (5.12) is asymptotic to z/2. This is reasonable because for small z the walls of
the dome are nearly perpendicular to the plane of the equatorial base, so the dome
is almost cylindrical near the base.

Centroid of a slice of a shell.

There is a common generalization of (5.10) and (5.12). Cut a slice of altitude z from
a shell having altitude h and scaling factor μ, and let cμ(z) denote the height of its
centroid above the base. Again, we simplify the calculation of cμ(z) by reducing
it to that of its prismatic counterpart. The slice in question is obtained from an
unpunctured prism of altitude z whose centroid has altitude z/2 above the base.
As in Theorem 5.19, let λ = z/h. If λ ≤ μ, the slice lies within the cavity, and the
prismatic counterpart is the same unpunctured prism of altitude z, in which case
we know from Theorem 5.16 that

cμ(z) =
z

2
(λ ≤ μ). (5.13)

If λ ≥ μ, the slice cuts the outer elliptic dome as shown in Figure 5.19a. In this
case the counterpart slice has a slant face due to a piece removed by the puncturing
pyramid, as indicated in Figure 5.19b.

Let V denote the volume of the unpunctured prismatic container of the outer
dome. Then λV is the volume of the unpunctured prism of altitude z. Remove from
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hh

μh

c (z)μ
c (z)μ

μhc(z)
μh3

8

O

z z 

(a) (b)

Figure 5.19: Determining the centroid of a slice of altitude z ≥ μh cut from an
elliptic shell element.

this prism the puncturing pyramid of volume λ3V/3, leaving a solid whose volume
is

V (z) = λV − 1

3
λ3V (λ ≥ μ) (5.14)

and whose centroid is at the altitude c(z) given by (5.12). This solid is the union of
the counterpart slice in question, and an adjacent pyramid with vertex O, altitude
μh, volume

vμ =
2

3
μ3V, (5.15)

and centroid at altitude 3μh/8. The counterpart slice has volume

V (z)− vμ = (λ− 1

3
λ3 − 2

3
μ3)V. (5.16)

To find the altitude cμ(z) of its centroid, equate moments to obtain

(
3

8
μh)vμ + cμ(z)(V (z)− vμ) = c(z)V (z),

from which we find

cμ(z) =
c(z)V (z)− ( 38μh)vμ

V (z)− vμ
.

Now we use (5.12), (5.14), (5.15) and (5.16). After some simplification we find
the result

cμ(z) =
3

4
h
λ2(2− λ2)− μ4

λ(3− λ2) − 2μ3
(λ ≥ μ). (5.17)
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When λ = μ, (5.17) reduces to (5.13); when λ = 1 then z = h and (5.17) reduces
to (5.10); and when μ = 0, (5.17) reduces to (5.12).

The results are summarized by

Theorem 5.20. A horizontal slice of altitude z ≥ μh cut from a shell of altitude
h and scaling factor μ has volume given by (5.16), where λ = z/h. The altitude of
its centroid above the base is given by (5.17). In particular the formulas hold for
any slice of a shell of an Archimedean, elliptic, or spherical dome.

Theorem 5.16 covers the case z ≤ μh.

In deriving the formulas in this section we made no essential use of the fact that
the shells are elliptic. The important fact is that each shell is the region between
two similar objects.

5.15 THE NECESSITY OF ELLIPTIC PROFILES

We know that every horizontal plane cuts an elliptic dome and its punctured cylin-
drical container in cross sections of equal area. This section reveals the surprising
fact that the elliptical shape of the dome is actually a consequence of this property.

Consider a dome of altitude h, and its punctured prismatic counterpart having
a congruent base bounded by a curve satisfying a polar equation r = ρ(θ). Each
vertical half plane through the polar axis at angle θ cuts the dome along a curve
we call a profile, illustrated by the example in Figure 5.20a. This is like the elliptic
dome in Figure 5.17a, except that we do not assume that the profiles are elliptic.

(a) (b)

profile

area A(z)
area B(z)

area  A(0)

z z
hhr c

ρ(θ) ( )

Figure 5.20: Determining the elliptic shape of the profiles as a consequence of the
relation A(z) = B(z).

Each profile passes through a point (ρ(θ), θ) on the outer edge of the base. At an
altitude z above the base a point on the profile is at a distance r from the polar
axis, where r is a function of z that determines the shape of the profiles. We define
a general profile dome to be one in which each horizontal cross section is similar to
the base. Figure 5.20a shows a portion of a dome in which ρ(θ) > 0. This portion

ρ θ
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5.15. NECESSITY OF ELLIPTIC PROFILES 167

can be regarded as a wedge with two vertical plane faces that can be thought of as
walls forming part of the boundary of the wedge.

Suppose that a horizontal plane at a distance z above the base cuts a region of
area A(z) from the wedge and a region of area B(z) from the punctured prism. We
know that A(0) = B(0). Now we assume that A(z) = B(z) for some z > 0 and
deduce that the point on the profile with polar coordinates (r, θ, z) satisfies

( r

ρ(θ)

)2
+
( z
h

)2
= 1 (5.18)

if ρ(θ) > 0. In other words, the point on the profile at a height where the areas are
equal lies on an ellipse with vertical semiaxis of length h, and horizontal semiaxis
of length ρ(θ). Consequently, if A(z) = B(z) for every z from 0 to h, the profile
will fill out a quarter of an ellipse and the dome will necessarily be elliptic. Note
that (5.18) implies that r → 0 as z → h.

To deduce (5.18), note that the horizontal cross section of area A(z) in Figure
5.20a is similar to the base with similarity ratio r/ρ(θ), where ρ(θ) denotes the radial
distance to the point where the profile intersects the base and r is the length of the
radial segment at height z. By similarity, A(z) = (r/ρ(θ))2A(0). In Figure 5.20b,
B(z) is equal to A(0) minus the area of a smaller similar region with similarity ratio
c/ρ(θ), where c is the length of the parallel radial segment of the smaller similar
region at height z. By similarity, c/ρ(θ) = z/h, so

B(z) = (1− (z/h)2)A(0).

Equating this to A(z) we find

(1− (z/h)2)A(0) = (r/ρ(θ))2A(0),

which gives (5.18). And, of course, we already know that (5.18) implies A(z) = B(z)
for every z. Thus we have proved:

Theorem 5.21. Corresponding horizontal cross sections of a general profile dome
and its punctured prismatic counterpart have equal areas if, and only if, each profile
is elliptic.

As already remarked in Section 5.12, an elliptic dome can be deformed in such
a way that areas of horizontal cross sections are preserved but the deformed dome
no longer has elliptic profiles. At first glance, this may seem to contradict Theorem
5.21. However, such a deformation will distort the vertical walls; the dome will not
satisfy the requirements of Theorem 5.21, and also the punctured counterpart will
no longer be prismatic.

An immediate consequence of Theorem 5.21 is that any reducible general profile
dome necessarily has elliptic profiles, because if all horizontal slices of such a dome
and its counterpart have equal volumes then the cross sections must have equal
areas. By a simple scaling argument, Theorem 5.21 can be extended to nonuniform
general profile domes built from a finite number of general profile similar shells, each
with its own constant density, under the condition that corresponding horizontal
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168 Chapter 5. PUNCTURED CONTAINERS

slices of the dome and its counterpart have equal masses. For example, if the dome
consists of two similar shells each with its own constant density, scale the outer shell
with respect to the base of the polar axis so its new density is that of the inner
shell. Do the same with its counterpart. This gives a new uniform dome and its
counterpart whose horizontal cross sections have equal areas. Hence by Theorem
5.21 every profile of the new dome is elliptic, so the original dome also has elliptic
profiles. By induction we obtain the result for a dome built from any number of
similar shells.

NOTES ON CHAPTER 5

Most of this chapter is a compilation of work published in [15] and [20], the first of
which was awarded a Lester R. Ford Award in 2005. The motivation for this chapter
was to extend to more general solids classical properties that seemed to be unique to
spheres and hemispheres. Initially an extension was given for Archimedean domes,
and a further extension was made by simply dilating the domes in a vertical direc-
tion. The extensions could also have been analyzed by using properties of inscribed
spheroids. A significant extension was made when we introduced polygonal ellip-
tic domes whose bases could be arbitrary polygons, not necessarily circumscribing
the circle. In this case there are no inscribed spheroids to aid in the analysis, but
the method of punctured containers was applicable. This led naturally to general
elliptic domes with arbitrary base, and the method of punctured containers was
formulated in terms of mappings that preserve volumes. But the real power of the
method is revealed by the treatment of nonuniform mass distributions. Problems
of determining volumes and centroids of elliptic wedges, shells, and their slices, in-
cluding those with cavities, were reduced to those of simpler prismatic containers.
Finally, we showed that domes with elliptic profiles are essentially the only ones
that are reducible.

Animated versions of parts of this chapter can be viewed at

http://www.its.caltech.edu/∼mamikon/globes.html .

For an intriguing story regarding the oldest known surviving copy of the work
of Archimedes see [43], or search the Internet for Archimedes Palimpsest.
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Chapter 6

UNWRAPPING CURVES
FROM CYLINDERS AND
CONES

This problem can be easily solved by the methods developed in this chapter. The reader

may wish to try solving it before reading the chapter.

A rectangular sheet of paper is wrapped to form part of the surface of a circular
cone as shown. The top edge of the rectangle forms the curved edge of the surface.
Various views of the curved edge of the surface are shown below.

(a)  side view (b)  front view (c)  top view

Give an analytic description, such as a cartesian equation, a polar equation, or
parametric equations for each of the curves in (a), (b), and (c). Consider also the
special case in which the vertex angle of the cone is π/3.

169
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6

What happens to the shape of a curve lying on the surface of a circular

cylinder when the cylinder is unwrapped onto a plane? Conversely, draw a

plane curve on transparent plastic, and roll it into cylinders of different radii.

What shapes does the curve take on the cylinders? How do they appear

when viewed from different directions? Similar questions are investigated for

space curves unwrapped from the surface of a right circular cone, including

conic sections, spirals, and geodesics. Unwrapped conic sections produce a

new class of plane curves called generalized conics. This chapter formulates

these somewhat vague questions in terms of equations, and analyzes them with

surprisingly simple two-dimensional geometric transformations that lead to

many unexpected results. The methods for analyzing cones and cylinders differ

substantially, but both use the fact that unwrapping a developable surface

preserves area and arclength. Applications are given to diverse fields such

as descriptive geometry, computer graphics, sheet metal construction, and

educational hands-on activities.

PART 1: UNWRAPPING FROM CYLINDERS

6.1 INTRODUCTION

In his delightful book Mathematical Snapshots, Steinhaus [66] describes a simple,
engaging construction, illustrated in Figure 6.1. Wrap a piece of paper around a
cylindrical candle, and cut it obliquely with a knife. The cross section is an ellipse,
which becomes a sinusoidal curve when unwrapped.
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172 Chapter 6. UNWRAPPING CURVES

Figure 6.1: Elliptical cross section of a cylinder becomes sinusoidal when unwrapped.

The same idea can be demonstrated with a safer instrument. Take a cylindrical
paint roller, dip it at an angle in a container of paint or water color, and roll it on
a flat surface. The roller prints a sinusoidal wave pattern as shown in Figure 6.2.

Figure 6.2: A paint roller used to print sinusoidal waves on a flat surface.

Now imagine the elliptical cross section replaced by any curve lying on the
surface of a right circular cylinder. What happens to this curve when the cylinder
is unwrapped?

Consider also the inverse problem, which you can experiment with by yourself:
Start with a plane curve (line, circle, parabola, sine curve, etc.) drawn with a felt
pen on a rectangular sheet of transparent plastic, and roll the sheet into cylinders
of different radii. What shapes does the curve take on the cylinders? How do they
appear when viewed from different directions? A few trials reveal an enormous
number of possibilities, even for the simple case of a circle.

Part 1 of this chapter formulates these somewhat vague questions more precisely,
in terms of equations, and shows that they can be answered with surprisingly simple
2-dimensional geometric transformations, even when the cylinder is not circular. For
a circular cylinder, a sinusoidal influence is always present, as exhibited above. And
we demonstrate, through examples, applications to diverse fields such as descriptive
geometry, computer graphics, printing, sheet metal construction, and educational
hands-on activities. Part 2, beginning with Section 6.12, treats curves unwrapped
from the surface of a right circular cone.
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6.2. UNWRAPPING ELLIPSE FROM CIRCULAR CYLINDER 173

6.2 UNWRAPPING AN ELLIPSE FROM A CIRCULAR CYLINDER

Before turning to the general problem, let’s analyze the foregoing sinusoidal con-
struction. Cut a right circular cylinder of radius r by a plane through a diameter of
its base, at angle of inclination β, where 0 < β < π/2. The example in Figure 6.3a
shows one-half of the elliptical cross section and a wedge cut from the cylinder. A
vertical cutting plane parallel to the major axis of the ellipse intersects the wedge
along a right triangle T (shown shaded) with base angle β.

When the lateral surface of the cylinder is unwrapped onto a plane, the circular
base unfolds along a line we call the x axis. Here x is the length of the circular arc
measured from A at the extremity of the base diameter, to B at the base of triangle
T , as shown in Figure 6.3a. The base of T has length r sin(x/r), and its height is
equal to h sin(x/r), where h = r tanβ, so the unwrapped curve is the graph of

u(x) = h sin
x

r

representing a sinusoidal curve with period 2πr and amplitude h. For fixed r, the
amplitude h increases with β.

T

r

A
Bx

β

(a) (b)

0 x πr

u(x) = h sin x
r

h

Figure 6.3: The circular arc AB of length x in (a) unwraps onto the line segment [0, x]
in (b). The altitude of triangle T unwraps onto the height u(x).

An adjacent arch below the x axis comes from unwrapping the second symmet-
rically located wedge. Volume calculations of cylindrical wedges like these were
considered by Archimedes and are analyzed in more detail in Chapter 5, where un-
wrapping of a cylinder is also used to deduce the quadrature of a sine curve without
integral calculus (see Section 5.8).

6.3 CURVE OF INTERSECTION OF TWO CYLINDERS

A cylinder is any surface generated or swept out by a straight line moving along a
plane curve and remaining parallel to a given line. The curve is called a directrix of
the cylinder and the moving line that sweeps out the cylinder is called a generator.
The directrix is not unique because any plane cuts a given cylinder along a plane
curve that can serve as directrix. When the cutting plane is perpendicular to the
generators we call the directrix a profile of the cylinder.
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174 Chapter 6. UNWRAPPING CURVES

A curve in the xy plane has an implicit cartesian equation of the form

m(x, y) = 0.

In xyz space the equation describes a cylinder having this profile, with generators
parallel to the z axis. Similarly, an equation of the form p(x, z) = 0 (with y missing)
describes a cylinder with generators parallel to the y axis, whereas one of the form
q(y, z) = 0 (with x missing) describes a cylinder with generators parallel to the x
axis.

Start with a vertical cylinder in xyz space with equation m(x, y) = 0, which we
call the main cylinder, and locate the coordinate axes so that the z axis lies along a
generator and the x axis is tangent to the profile. Intersect the main cylinder with
a horizontal cylinder p(x, z) = 0, which we call the cutting cylinder. Their curve
of intersection C is the set of points (x, y, z) that satisfy both m(x, y) = 0 and
p(x, z) = 0. Let Cp denote the profile of the cutting cylinder, which shows what
C looks like when viewed along the generators of the cutting cylinder (see Figure
6.4a). We call the xz plane the viewing plane, and the equation p(x, z) = 0 the
profile equation.

C P

viewing plane

cutting cylinder

main cylinder

pC

p(x, ) =  0

m(x,y) = 0

x

y

z

m(x,y) = 0
s(t)

y

x = s(t)t

(a) (b)

Figure 6.4: Curve of intersection of a main cylinder and an orthogonal cutting cylinder.

6.4 UNWRAPPING A CURVE FROM ANY CYLINDER

Now unwrap the main cylinder onto the xz plane, which we call the unwrapping
plane. A curve C on the cylinder is printed onto an unwrapped curve Cu in the xz
plane. It has an equation of the form u(x, z) = 0, called an unwrapping equation,
which we shall determine from the profile equations m(x, y) = 0 and p(t, z) = 0
that define C.

z
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6.5. UNWRAPPING FROM A CIRCULAR CYLINDER 175

We use the fact that every cylinder is a developable surface, hence unwrapping
preserves distances. In particular, any arc of length s on the (horizontal) profile
m(x, y) = 0 gets printed onto a line segment of the same length on the x axis.

To formulate this in terms of equations, imagine each point P on the profile of
the main cylinder described in terms of new parameters t and s(t), where s(t) is the
arclength of the portion of the profile joining the origin to P , and t is the projection
of that arc on the x axis. Unwrapping the cylinder prints P onto a point on the
xz plane with coordinates (s(t), 0) (Figure 6.4b). Hence any other point on C at
a height z above P is printed onto the point (s(t), z), where z satisfies the profile
equation p(t, z) = 0. Consequently, in the unwrapping equation u(x, z) = 0, x and
z are related by x = s(t) and p(t, z) = 0. We plot t on the x axis.

To express u directly in terms of p, we consider portions of C for which the
function x = s(t) has an inverse, so that t can be expressed in terms of x by the
relation t = s−1(x). Under these conditions, we have the following theorem.

Theorem 6.1. For an intersection curve C as described above, the profile equation
p(t, z) = 0 of Cp and the unwrapping equation u(x, z) = 0 of Cu are related by

u(x, z) = p(s−1(x), z), (6.1)

p(t, z) = u(s(t), z). (6.2)

When curves Cp and Cu are described by explicit equations, we use the same
letters p (for profile) and u (for unwrapping) and write z = p(t) and z = u(x),
respectively. In this case (6.1) and (6.2) become

u(x) = p(s−1(x)), p(t) = u(s(t)).

In other words, to obtain the profile function p(t) from u(x), replace the argument
x by the arclength s(t). And, conversely, to obtain the unwrapping function u(x)
from p(t), replace the argument t by the inverse s−1(x).

The following special case is worth noting.

Corollary 6.1. If the unwrapping function is linear, u(x) = x, then the profile
function is the arclength function: p(t) = s(t). And if the profile function is linear,
p(t) = t, then the unwrapping function is the inverse of the same arclength function:
u(x) = s−1(x).

6.5 UNWRAPPING A CURVE FROM A CIRCULAR CYLINDER

Figure 6.5 illustrates these ideas when the main cylinder is a right circular cylinder
of radius r. In Figure 6.5c, a circular arc of length rθ is unwrapped onto a segment
of length x, and its horizontal projection has length t = r sin θ. Because θ = x/r,
the arclength function is x = s(t) = r arcsin(t/r), and its inverse is t = s−1(x) =
r sin(x/r).

ApostolGeoChapter 6_v2.indd   7ApostolGeoChapter 6_v2.indd   7 10/1/12   10:58 AM10/1/12   10:58 AM



176 Chapter 6. UNWRAPPING CURVES

C

Cp

0 t

z z

C

Cu

0

r

(a) (b) (c)

viewing
plane unwrapping 

plane

x = r
t = r sin 

θ

Figure 6.5: (a) Curve C on a circular cylinder and its horizontal profile Cp on a tangent
viewing plane. (b) The unwrapped curve Cu obtained by rolling the cylinder along the
unwrapping plane. (c) A point on a circle projects onto t = r sin θ, but unwraps onto
x = rθ.

Thus, Theorem 6.1 becomes:

Theorem 6.2. On a right circular cylinder of radius r, let C be a curve defined
by the profile Cp of a horizontal cutting cylinder, and let Cu denote its unwrapped
image. Then the profile equation p(t, z) = 0 for Cp and the unwrapping equation
u(x, z) = 0 for Cu are related by

u(x, z) = p(r sin
x

r
, z), (6.3)

p(t, z) = u(r arcsin
t

r
, z). (6.4)

This shows that the sine function is always present when a curve is unwrapped
from a right circular cylinder onto a plane. When Cp and Cu are described by
explicit equations, say z = p(t) and z = u(x), then (6.3) and (6.4) become

u(x) = p(r sin
x

r
), (6.5)

p(t) = u(r arcsin
t

r
). (6.6)

If r = 1, then arcsin t = s(t), the length of the circular arc whose sine is t.

Now we apply Theorem 6.2 to some simple examples. The first two illustrate
Corollary 6.1.

Example 1 (Linear profile function p(t)=ct). In this case, the cutting
cylinder is a plane through the line z = ct, where c is constant. From (6.5) we
find that the unwrapping function is u(x) = cr sin(x/r), whose graph is a sinusoidal
curve with period 2πr.

θ
θ
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6.5. UNWRAPPING FROM A CIRCULAR CYLINDER 177

If the cutting plane is inclined at an angle β with a horizontal diameter of the
cylinder, then c = tanβ and the unwrapping function is u(x) = h sin(x/r), where
h = r tanβ, in agreement with the result obtained earlier by analyzing Figure 6.3.
The shape of the cross section curve C itself depends on the direction from which it
is viewed. When viewed along the edge of the cutting plane we see the profile Cp as
a line segment. In a later example we show that when viewed from any direction the
cross section cut by a plane is, as expected, always an ellipse (possibly degenerate).

Example 2 (Linear unwrapping function u(x)=cx). This example ex-
plains what happens when a straight line on a transparency is rolled onto a cylinder
of radius r. The corresponding profile function obtained from (6.6) is

p(t) = cr arcsin
t

r
.

Because distances are preserved when the cylinder is unwrapped, a line segment
on the unwrapped cylinder (the shortest path between its endpoints) becomes a
geodesic arc (the shortest path) on the cylinder, no matter how tightly it is rolled.
In other words, on a right circular cylinder the profile of a geodesic arc is part of
an arcsine curve.

(a) (b) (c) (d) (e)

Figure 6.6: A line segment (a) wraps onto a geodesic. (b)-(e) Geodesic profiles (arcsine
curves) on cylinders of decreasing radii. The dashed curves in (d) and (e) are on the rear
half of the cylinder.

Figure 6.6a shows the line u(x) = x in the unwrapping plane, and Figures 6.6b-e
show the profile of the geodesic arc on cylinders of decreasing radii. Again we see
sinusoidal curves, but they are flipped sideways, as predicted by Corollary 6.1. The
dashed curve in Figure 6.6d indicates the portion of the geodesic arc that lies on the
rear half of the cylinder. The two repeated curves in Figure 6.6e represent different
branches of the arcsine function.

This suggests a simple educational hands-on activity that can engage young
students while they learn that a geodesic on a circular cylinder is always part of a
circular helix. Use a felt pen to draw a line segment on a transparency, roll it into
a circular cylinder, view the profile in various directions, and watch the sine waves
change shape as the radius of the cylinder varies.
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178 Chapter 6. UNWRAPPING CURVES

Example 3 (Parabolic cutting cylinder). Figure 6.7 shows a quadratic pro-
file equation p(t) = ct2 for a constant c > 0. By (6.5) the corresponding unwrapping
function for Cu is

u(x) = cr2 sin2
x

r
. (6.7)

C
Cp

t

Cu

x

zz

Figure 6.7: Curve C cut by parabolic cylinder, with profile Cp and unwrapped curve Cu.

Examples of this type have practical applications. To illustrate, take a rect-
angular piece of sheet metal cut along the curve described by (6.7), and roll it to
form a circular cylinder of radius r. The curve C cut out on the resulting cylinder
indicates exactly where it will intersect a parabolic gutter having profile p(t) = ct2.

Example 4 (Wrapping a circle onto a cylinder). On a sheet of transparent
plastic, draw a unit circle, and roll the sheet into a circular main cylinder. What
does the wrapped circle look like when viewed from the side? The circle wraps onto
a curve C and we want its horizontal profile Cp. The upper half of the unwrapped
unit circle can be described by the unwrapping function

u+(x) =
√

1− x2,

and the lower half by u−(x) = −
√
1− x2, shown dotted in Figure 6.8a. Both halves

can be described by the implicit equation

u2(x) = 1− x2.

From (6.5) we see that the corresponding profile functions are p±(t) = u±(r arcsin t
r ),

both of which can be described by the implicit equation

p2(t) = 1− (r arcsin
t

r
)2.

They depend on the radius of the main cylinder.
In Figures 6.8b-f the cylinder is turned (for ease in displaying) so that its axis

is horizontal, and the corresponding graph of p+(t) is shown for various values of
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(a)

(b)

(c)

(d) (e) (f)

Figure 6.8: Circle on a transparency rolled onto cylinders of decreasing radii.

radius r. The flipped graph of each p−(t) (not shown) is the mirror image reflection
through the horizontal dashed line. In Figures 6.8c-f the dashed curves lie on the
rear half of the cylinder and are hidden from view.

6.6 ROTATING THE MAIN CYLINDER

On a main circular cylinder of radius r, take a curve C with explicit profile function
z = p(t). Rotate the cylinder through an angle α about its axis, but keep the
viewing plane fixed. The profile function of the rotated curve on the viewing plane
depends on α and we denote its ordinates by zα. The next theorem describes zα in
terms of p.

Theorem 6.3. On a cylinder of radius r, take a curve C with profile function
z = p(t) on the viewing plane. If the cylinder is rotated about its axis through an
angle α, the rotated curve on the same viewing plane has profile function

zα = p(t cosα+
√
r2 − t2 sinα). (6.8)

Proof. Rotation of the cylinder through an angle α is equivalent to shifting
the arclength x = rθ by an amount rα. Therefore, if the unwrapping function of
C is u(x), rotation of the cylinder through an angle α (measured clockwise when
viewed from above) replaces x by x+ rα, and the unwrapping equation of rotated
C becomes

zα = u(x+ rα) = p(r sin
x+ rα

r
)

by (6.5). But

r sin(
x

r
+ α) = r sin

x

r
cosα+ r cos

x

r
sinα.
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In terms of t = r sin(x/r), we have r cos(x/r) =
√
r2 − t2, and the foregoing

equation for zα becomes

zα = p( r sin
x+ rα

r
) = p(t cosα +

√
r2 − t2 sinα),

which proves (6.8). Note that z0 = p(t).
It is not surprising that the combination t cos α+

√
r2 − t2sin α in (6.8) resembles

the right side of the equation x′ = x cos α + y sin α for changing coordinates from
an xy system to an x′y′ system by rotation of axes through an angle α.

We leave it to the reader to formulate the result corresponding to (6.8) when
the profile is given in implicit form p(z, t) = 0.

Corollary 6.2. (Perpendicular view) When α = π/2, we get the profile function

zπ/2 = p(
√
r2 − t2).

Example 5 (Rotated view of a slanted plane cut). If p(t) = t, which
corresponds to cutting the original cylinder by a plane inclined at 45o, then (6.8)
becomes

zα = t cosα+
√
r2 − t2 sinα,

which implies

z2α − 2zαt cosα+ t2 = r2 sin2 α.

As expected, this represents an ellipse (possibly degenerate) in the tzα plane.
Examples are shown in Figure 6.9. When α = 0 the profile is a line segment, z = t,
and when α = π/2, it is a circle, z2 + t2 = r2.

Figure 6.9: Various profiles of a rotating inclined ellipse. The dashed portions lie on the
rear half.

Example 6 (Rotated view of a parabolic cut). In this case p(t) = ct2 and
(6.8) becomes

zα = c(t cosα+
√
r2 − t2 sinα)2.

For c = 1,Figure 6.10 shows the profile curve Cp for various values of α. Surpris-
ingly, when the cylinder is rotated through a right angle, the profile is the mirror
image of the original parabola reflected through the line z = r2/2.
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α = 0 α = π/6 α = π/4 α = π/3 α = π/2

Figure 6.10: Rotated views of a parabolic intersection. In a perpendicular direction we
see the original parabola flipped upside down.

6.7 CYLINDER TO CYLINDER

Relations (6.5) and (6.6) can also be used to analyze what happens when a curve on
one circular cylinder is unwrapped onto another cylinder and viewed on a common
viewing plane, all three tangent along a common generator. Start with a curve C(r)
on a right circular cylinder of radius r with profile function pr, and first unwrap it
onto a plane curve Cu with unwrapping function z = u(x), where

u(x) = pr(r sin
x

r
).

Now take the unwrapped curve Cu and let C(R) be the curve obtained by
wrapping Cu back onto a right circular cylinder of radius R. Because C(R) has the
same unwrapping function u, its profile function pR satisfies

u(x) = pR(R sin
x

R
).

Now equate the two expressions for u(x) to obtain:

Theorem 6.4. The profile functions pr and pR of a curve on two tangent cylinders
of respective radii r and R are related by

pr(r sin
x

r
) = pR(R sin

x

R
). (6.9)

In particular, if one cylinder has radius r = 1, we can use (6.9) to see how the
profile of C(R) varies with R. In this case, pR and p1 satisfy

pR(R sin
x

R
) = p1(sinx). (6.10)

Equation (6.10) can also be written as

pR(t) = p1(sin(R arcsin
t

R
)).

The dependence on R can be regarded as a movie that shows various stages of
the process of unwrapping. As R→∞ the cylinder of radius R becomes the tangent
viewing plane and (6.10) becomes u(x) = p1(sinx), in agreement with (6.5).
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182 Chapter 6. UNWRAPPING CURVES

Example 7 (Unwrapping an ellipse from one cylinder to another).
Take p1(t) = t,which corresponds to cutting the main cylinder of radius 1 by a
plane inclined at 45o. The curve of intersection on the original cylinder is an ellipse
C but its profile on the viewing plane appears as a line segment. When we unwrap
the unit cylinder onto a cylinder of radius R, the profile function pR of the ellipse
becomes, according to (6.11),

pR(t) = sin(R arcsin
t

R
).

Figure 6.11 shows the profile of curve C(R) for various values of R, starting with
R = 1 in Figure 6.11c. Smaller radii are shown in Figures 6.11a and b, and larger
radii in Figures 6.11d and 6.11e. The limiting case R → ∞ is a pure sine curve,
z = sin t.

(a) (b) (c) (d) (e)

Figure 6.11: The shape of the profile curve varies with the radius of the cylinder, from a
line segment in (c) (R = 1), to smaller radii in (a), (b) and larger radii in (d), (e).

6.8 DRILLED CYLINDER

Through the main cylinder of radius r, drill a hole with a circular cylindrical drill
of radius a whose axis is perpendicular to the viewing plane at a distance d from
the axis of the cylinder, where 0 ≤ d ≤ r + a. The edge of the hole is a curve C on
the given cylinder that appears as part of a circle when viewed along the axis of the
drill. A plane through the axis of the main cylinder parallel to the viewing plane
divides the cylinder into two parts, a front portion and a mirror image rear portion.
The curve C will also consist of two parts, one lying on the front portion, and the
mirror image on the rear portion. The two parts can be connected or disconnected,
depending on the size and position of the hole. Also, the corresponding unwrapped
curve Cu will be symmetric about the vertical line x = πr/2.

Place the axis of the drill so it intersects the t axis of the viewing plane orthog-
onally at (d, 0). To find the unwrapping function z = u(x) of C, first we find the
profile function z = p(t), then by (6.5) we have u(x) = p(r sin(x/r)). When r = 1,
we have u(x) = p(sinx).

To determine p(t), note that each projected point (t, p(t)) in the viewing plane
lies on a circle of radius a with center at (d, 0), so p(t)2 + (d− t)2 = a2. Hence the
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6.8. DRILLED CYLINDER 183

upper and lower halves of the circular hole have profile functions that satisfy

p2(t) = a2 − (d− t)2 . (6.11)

The corresponding unwrapping functions satisfy

u2(x) = a2 − (d− r sin
x

r
)2. (6.12)

The following examples display interesting families of unwrapped curves obtained
when a, d, and r are treated as parameters.

Example 8 (Drill of same radius as main cylinder; variable distance
d). Take a = r = 1 in (6.12), and let d decrease from 2 to 0. When d = 2, the drill
is tangent to the main cylinder at one point, which unwraps onto the single point
(π/2, 0). For d = 1, the unwrapping equation is

u2(x) = 2 sinx− sin2 x .

As d decreases, the hole changes shape, reaching its maximum size when d = 0, at
which stage the drill’s axis passes through the axis of the main cylinder and

u2(x) = 1− sin2 x = cos2 x.

Figure 6.12 shows the upper half of the unwrapped curve for decreasing values of d.

π/2 π/2 π/2 π/2

Figure 6.12: The unwrapped curve (upper half) obtained by drilling a hole of unit radius
through different parts of the main cylinder of the same radius. Each is symmetric about
the line x = π/2. The lower half (not shown) is the reflection of the upper half through
the x axis.

Each curve shown in Figure 6.12 includes the unwrapped symmetric image that
comes from the rear portion of the main cylinder, with vertical axis of symmetry
x = π/2. In each case the lower half (not shown) can be obtained by reflecting
the curve through the x axis. Incidentally, the graph of z = |cosx|, together with
its reflection, z = −|cosx|, for |x| ≤ π/2, represent the unwrapped intersection of
two perpendicular cylinders of unit radius. In this case the intersection itself is an
ellipse (see [2]).

Example 9 (Centered drill of variable radius). If r = 1 and d = 0, the hole
is centered on the axis of the main cylinder, and (6.12) becomes u2(x) = a2−sin2x,
which represents a family of unwrapped curves depending on the radius a of the hole.
In this example the geometry and the equation itself show that each unwrapped
curve is symmetric about the line x = 0. Figure 6.13 shows a few members of the

family, z =
√

a2 − sin2x, for increasing values of a, from very small radius to very
large radius. The case a = 1gives the third curve, z = |cosx|, also in Figure 6.12.
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184 Chapter 6. UNWRAPPING CURVES

0 0 0 0 0 

Figure 6.13: The unwrapped image of the upper half of a hole of variable radius drilled
through the axis of the main cylinder. Each is symmetric about the line x = 0. The lower
half (not shown) is the reflection of the upper half through the x axis.

Example 10 (Rotated view of a drilled circular hole). Return to (6.11),
which describes the projected view of the hole obtained by drilling through the
main cylinder of radius r with a drill of radius a whose axis is perpendicular to the
viewing plane at a distance d from the axis of the cylinder, where 0 ≤ d ≤ r + a.
Let’s find the shape of the hole as projected in the viewing plane after the main
cylinder has been rotated through a right angle. Applying the general rotation
formula in (6.8) with α = π/2 and p(t) as given in (6.11), we find the upper and
lower halves of the hole in the rotated cylinder satisfy

z2 = a2 − (d−
√

r2 − t2)2 . (6.13)

This can be written as

z2 = a2 − d2 − r2 + t2 + 2d
√
r2 − t2,

or
(z2 − a2 + d2 + r2 − t2)2 = 4d2(r2 − t2),

a cartesian equation of degree 4 in t and in z.
When d = r+a, the drill is tangent to the main cylinder. As d decreases towards

0 the projection of the rotated hole changes its appearance. When d = 0, the drill
passes through the axis of the cylinder and the cartesian equation simplifies to

t2 − z2 = r2 − a2,

which represents an equilateral hyperbola if a �= r. The hyperbola has a horizontal
axis if a < r and a vertical axis if a > r. If a = r, the radius of the drill is the same
as that of the cylinder and the rotated projected curves are the pair of lines z = ±t.

Figure 6.14 shows how the projection changes its appearance when r = a =
1, and the axis of the drill moves toward the axis of the main cylinder. In Figures
6.14a-d it has the appearance of an expanding oval. In Figure 6.14e it becomes
nonconvex, then gradually deforms to resemble hyperbolas (Figure 6.14f). Finally
the two axes intersect when d = 0 and it becomes a pair of lines, a degenerate
hyperbola (Figure 6.14g).

Figure 6.15 shows a corresponding sequence when r = 1 and a = 1/2. When
d = 0 an equilateral hyperbola suddenly appears. When a > 1 the projections are
like those in Figure 6.15, but turned sideways by 90o.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.14: Profiles of the hole made by a drill of radius equal to that of the main
cylinder, as the axis of the drill moves toward the axis of the main cylinder, viewed from
a direction perpendicular to the axis of the drill.

Figure 6.15: Profiles of the hole made by a drill of radius half that of the main cylinder,
as the axis of the drill moves toward the axis of the main cylinder, viewed from a direction
perpendicular to the axis of the drill.

When
√
r2 − t2 is replaced with

√
r2 + t2 in (6.13), the resulting equation de-

scribes a cross section of a torus.

Figure 6.16 shows some curves of intersection of a torus with a vertical plane,
and provides an interesting analogy to Figure 6.15.

Bernoulli lemniscate

Figure 6.16: Curves of intersection of a torus with a vertical plane.
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186 Chapter 6. UNWRAPPING CURVES

6.9 TILTED CUTTING CYLINDER

Up to now we have studied the profile of a curve C cut from the main cylinder
by an orthogonal cutting cylinder. In descriptive geometry and in applications to
sheet metal work the cutting cylinder is not always orthogonal to the main cylinder
but may be tilted at an angle β. For the applications, we want to know what
the unwrapped version Cu looks like so we can cut the unwrapped cylinder along
this curve. To find Cu it suffices to determine the horizontal projection Cp, which
is related to the profile of the slanted cutting cylinder. Figure 6.17 reveals this
relation.

β

q(t)

p(t)

z'

p(t)

t z

Cp

0
t

m(t)

C

0

z'

p(t) p(t) cos β
q(t)

m(t) sin β
β

m(t)

q(t) = p(t) cos β + m(t) sin β
t

Figure 6.17: Main cylinder cut by a tilted cylinder, and a horizontal view along the t
axis.

Assume the main cylinder has directrix with explicit equation y = m(t) in the
horizontal ty plane. Introduce a z′ axis perpendicular to the horizontal t axis and
making an angle β with the vertical z axis. Let z′ = q(t) denote the equation in the
tz′ plane of the profile of the tilted cutting cylinder. (Although m(0) = 0,we do
not require that q(0) = 0.) The relation between q(t) and the horizontal projection
function z = p(t) is given in (6.14). If q(t) is known, this determines p(t) which
leads to the required unwrapping function u(x).

Theorem 6.5. Let C be the curve of intersection of a main cylinder with horizontal
profile y = m(t), cut by another cylinder tilted at an angle β, with profile function
z′ = q(t). Then the horizontal projection z = p(t) of Cp is related to the function
z′ = q(t) by

q(t) = p(t) cos β +m(t) sin β. (6.14)

Figure 6.17 provides a geometric proof of (6.14), which represents a rotation
from the z axis to the z′ axis. The term p(t) cosβ is the projection of p(t) onto the
tilted viewing plane, and the term m(t) sinβ is an upward shift due to the angle of
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6.9. TILTED CUTTING CYLINDER 187

view. In particular, if the main cylinder is circular of radius r with directrix tangent
to the t axis, then (y − r)2 + t2 = r2, so y = m(t) = r −√r2 − t2.

Special cases.

(a) If β = 0, this gives q(t) = p(t).
(b) If β = π/2, (6.14) becomes z′ = m(t). This is to be expected because the

viewing direction is along the axis of the main cylinder, and every curve on the
main cylinder appears as part of its profile.

(c) If p(t) = 0, (6.14) becomes z′ = m(t) sinβ, a scaled version of the profile
of the main cylinder. In particular, if the main cylinder has a circular profile
m(t) = r−√r2 − t2, then for β �= 0 the relation z′ = m(t) sinβ can also be written
as

t2

r2
+ (

z′ − r sinβ

r sin β
)2 = 1.

This is the equation of an ellipse with center at (0, r sin β) in the tz′ plane and
with semiaxes of lengths r and r sin β. In this case, C is a circle of radius r on the
main cylinder, and it appears as an ellipse when projected on a tilted plane.

(d) If the main cylinder has a circular profile m(t) = r − √r2 − t2, then as
r →∞ the main cylinder becomes a plane, (r−√r2 − t2)→ 0, and (6.14) becomes
q(t) = p(t) cosβ, as expected.

(e) When cosβ �= 0, (6.14) can be solved for p(t) to give

p(t) = q(t) secβ −m(t) tanβ, (6.15)

a linear combination of the two profile functions q(t) and m(t). In particular, if the
cutting cylinder is a circular cylinder of radius a cutting a main circular cylinder of
radius r at angle β, then (6.15) holds with q(t) =

√
a2 − t2 and m(t) = r−√r2 − t2.

Example 11 (Intersection of two circular cylinders). Now take the special
case of (e) in which a = r. Let z = p(t), and write (6.15) in the form

z + r tanβ =
√
r2 − t2(secβ + tanβ)

or
t2

r2
+ (

z + r tanβ

r(secβ + tanβ)
)2 = 1.

This is the equation of an ellipse with center at (0,−r tanβ) in the tz plane and
semiaxes of lengths r and r(secβ + tanβ). Because the projected curve Cp is an
ellipse, we know that the unwrapped curve Cu will be sinusoidal.

Example 12 (Tilted view of a geodesic). Example 2 revealed that a geodesic
on a right circular cylinder is a circular helix whose side view is a sine curve. On a
circular cylinder of radius 1, the geodesic with unwrapping function u(x) = cx has
horizontal profile p(t) = c arcsin t, and the main cylinder has circular profile m(t) =
1−√1− t2. Hence (6.14) gives

q(t) = c(arcsin t) cosβ + (1−
√
1− t2) sinβ.

ApostolGeoChapter 6_v2.indd   19ApostolGeoChapter 6_v2.indd   19 10/1/12   10:58 AM10/1/12   10:58 AM



188 Chapter 6. UNWRAPPING CURVES

When tanβ = c, the helix is viewed along one of its tangents of constant slope, and
this becomes

1

sinβ
q(t) = arcsin t+ (1−

√
1− t2).

The right member is easily shown to represent a cycloid, the path traced out by a
point on the circumference of a circular disk that rolls along a straight line, so the
profile q(t) describes a cycloid dilated in the z′ direction by the factor sinβ.

This can also be demonstrated physically with a flexible spring, such as the toy
called “slinky.” By stretching the spring and viewing it from different directions
you can see the helix change its appearance from sine curve to curtate cycloid, to
cycloid, and to prolate cycloid.

6.10 UNWRAPPING CURVES FROM A GENERAL CYLINDER

The examples treated thus far involve curves unwrapped from a right circular cylin-
der. Now we discuss a curve unwrapped from a noncircular vertical cylinder. For
the directrix we take a logarithmic spiral because its arclength is easily calculated.

Example 13 (Logarithmic spiral cylinder cut by a plane). A plane curve
with polar equation r = ecθ, where c is a positive constant and θ varies over all
real values, is commonly called a logarithmic spiral. Here c = tan δ, where δ is the
complement of the constant angle between the tangent to the spiral and the radial
line from the origin, as shown in Figure 6.18a.

δ

(a) (b)

Figure 6.18: (a) Logarithmic spiral. (b) Vertical cylinder with the spiral as directrix cut
by an inclined plane.

The graph makes infinitely many circuits around the origin, and Figure 6.18a
shows part of the graph when c = 1 and θ varies over a finite interval. Figure 6.18b
shows a vertical cylinder having this portion of the spiral as directrix. A plane
inclined at 45o cuts the cylinder along a curve, part of which is shown Figure 6.18b,
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6.10. UNWRAPPING FROM A GENERAL CYLINDER 189

and we wish to find a cartesian equation of the form z = u(x) for the unwrapped
curve when the cylinder is unwrapped onto the xz plane.

To do this, we first determine the arclength of the spiral r = ecθ. The integral
for arclength in polar coordinates is easily calculated and shows that as θ varies
over any finite interval [a, b] the corresponding arclength of the spiral is k(ecb−eca),
where

k =

√
1 + c2

c
.

Geometrically, k = 1/ cos δ. In particular, when a → −∞, the arclength s of the
spiral from the origin to a point at radial distance r is given by s = kr. The
horizontal projection t of the point (r, θ) is

t = r cos θ =
s

k
cos(log

s

k
),

which expresses t as a function of s. If x = s(t), then t = s−1(x), where

s−1(x) =
x

k
cos(log

x

k
).

A plane through the origin inclined at 45o with the t axis has cartesian equa-
tion z = p(t) = t. Therefore by Theorem 6.1 the unwrapping function is u(x) =
p(s−1(x)), so the unwrapping equation becomes

z =
x

k
cos(log

x

k
).

Figure 6.19 shows the general shape of the graph of the unwrapped curve, greatly
distorted horizontally. The slopes of the dotted lines will change if the angle of
inclination of the cutting plane changes.

z

x
k

Figure 6.19: Unwrapped curve of intersection of a vertical logarithmic cylinder cut with
an inclined plane.
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190 Chapter 6. UNWRAPPING CURVES

6.11 APPLICATIONS TO GRAPHICS

Powerful 3-D modeling programs can be used to render the qualitative shape of
the curve of intersection of two cylindrical surfaces on a computer screen. However,
exact equations like those derived in this paper provide a deeper understanding, and
are also useful when graphing projection and unwrapping functions. The graphs are
not specified by 3-D modeling programs which, for example, do not reveal whether
a projected oval curve is an ellipse or a curve of higher degree. Knowing that a
curve is an ellipse can have profound implications. For example, Kepler’s landmark
discovery that planetary orbits are elliptic implies Newton’s inverse-square law of
gravitation.

The exact equations allow us to easily plot curves and animate them on a com-
puter screen using simple 2-D graphics programs instead of 3-D programs. Most
illustrations in this chapter were prepared in this manner.

Remarks on arclength invariance.

We have seen that arclength invariance plays a fundamental role in determining
the shape of a curve unwrapped from a cylinder. Although arclength calculations
usually involve complicated integrals, we know that distances are preserved when a
developable surface such as a cylinder is unwrapped. Thus, a curve on a cylinder
has the same arclength as its unwrapped counterpart. In particular, from Figure 6.1
we see that an ellipse has the same arclength as an unwrapped sine curve, without
the need to calculate the elliptic integrals that produce numerical values.

In the rest of this chapter, we replace the main cylinder by a right circular cone,
and investigate what happens to a curve on its lateral surface when the cone is
unwrapped onto a plane. The analysis on a cone differs from that on a cylinder,
but again depends on arclength invariance, and leads to interesting and somewhat
surprising results expressed as simple formulas.

PART 2: UNWRAPPING FROM CONES

6.12 UNWRAPPING CURVES FROM A RIGHT CIRCULAR CONE

Start with a curve C lying on the surface of a right circular cone, and consider
questions of the following type:

What is the shape of the image of C when the cone is unwrapped, that is, tipped
on a generator and rolled onto a plane, or onto another cone? How does C appear
when viewed from different directions?

All cones in this chapter are right circular cones, and we unwrap not only conic
sections, but any curve lying on the surface of a cone. We employ three simple
geometric transformations: projecting the curve onto the ceiling plane (a plane
orthogonal to the cone’s axis and passing through its vertex), scaling the ceiling
projection radially from the vertex, and compressing the polar coordinate angle.
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6.12. UNWRAPPING FROM A CIRCULAR CONE 191

We formulate the basic questions more precisely in terms of equations, and show
they can be answered once the ceiling projection is known. We discuss interesting
curves on cones that are not conic sections, including geodesic curves, and curves
cut by various cylinders. These reveal some surprising results. For example, when
a hyperbolic cylinder cuts a cone, the curve of intersection may appear in different
directions not only as a hyperbola, but also as an ellipse, a parabola, or even a
geodesic (on a special cone).

Figure 6.20a shows two familiar curves on a cone. One is a circular cross section
we call a base, whose unwrapped image is a circular arc, the dashed curve in Figure
6.20b. The other is an ellipse that unwraps to form a new plane curve, a generalized
ellipse shown in Figure 6.20b.

Now we replace the ellipse in Figure 6.20a by a general curve C lying on a cone,
and unwrap it onto a plane. In the plane, generators of the cone are mapped onto
radial lines emanating from the cone’s vertex. A point P on C is mapped onto a
point in the plane with polar coordinates (R(θ), θ), with the origin at the vertex of
the cone, where R(θ) is the distance of P from the vertex of the cone, and θ is the

base

α

β

P

R(

R(0)

R(0)

R(
generalized ellipse

unwrapped 
base

(a) (b)

θ

  )

  )

Figure 6.20: (a) An elliptical cross section. (b) Its unwrapped image on a plane.

polar angle in radians measured from a fixed radial line to that through the image
of P . We can also regard θ as being measured along the surface of the cone from
the fixed generator to the generator through P . Thus, (R(θ), θ) can be thought of
as conical coordinates on the cone itself. The function R(θ) depends on C, and we
formulate the following general problem:

Basic problem: For a curve C on the cone, obtain an explicit formula for
R(θ). In particular, describe R(θ) when C is a conic section.

The analysis on a cone differs from that on a cylinder, but again relies on
arclength invariance, as indicated in the following special case.

θ

θ
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192 Chapter 6. UNWRAPPING CURVES

6.13 UNWRAPPED BASE AND PRESERVATION OF ARCLENGTH

For a finite portion of the cone with a circular base, as shown in Figure 6.21a,
the unwrapped image of the base is a circular arc with center at the cone’s vertex
and radius equal to the slant height s of the finite portion. In this simple case,
the basic problem is easily solved because the radial distance R(θ) is constant,
R(θ) = R(0) = s.

α

s

ρ

s

circular base circular arc

θ
ϕ

ρ

Figure 6.21: (a) Finite portion of a cone with slant height s. (b) Unwrapping the surface
of the finite portion.

Figure 6.21 also reveals a basic fact that plays a key role in solving the general
problem. Let ρ denote the radius of the base in Figure 6.21a. When the base rolls
through an angle of ϕ radians, the corresponding portion of the base of arclength
ρϕ unwraps onto a circular arc of radius s and central angle that we denote by θ
(Figure 6.21b). Because the cone is a developable surface, distances are preserved
when the cone is unrolled onto a plane, so we have

sθ = ρϕ. (6.16)

It is easy to see that the relation between θ and ϕ is independent of ρ and s. In
Figure 6.21a, α is half the vertex angle of the cone (0 < α < π/2), and ρ is related
to s by

ρ = s sinα. (6.17)

Combining (6.16) and (6.17) we find a relation independent of ρ and s :

θ = ϕ sinα. (6.18)

The simple relation (6.18) occurs repeatedly in analyzing the shape of a curve
unwrapped from a cone. With k = 1/ sinα, (6.18) can be written as

ϕ = kθ. (6.19)

Thus, the sine of half the vertex angle determines the relation between ϕ and θ.
When the cone is cut by a plane through a diameter of the base inclined at

an angle β, the conic section is an ellipse, parabola, or hyperbola, depending on
β. Figure 6.20a shows an ellipse, which unwraps to form a generalized ellipse that
oscillates about the image of the base as shown in Figure 6.20b. An explicit formula
for R(θ),which depends on both β and the cone’s vertex angle, is given in (6.25).
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6.14. CEILING PROJECTION 193

6.14 REFORMULATED PROBLEM IN TERMS OF CEILING
PROJECTION

In Part 1 of this chapter we analyzed a general curve on a cylinder by projecting
it onto an unwrapping plane parallel to the generators of the cylinder. To analyze
a curve C lying on a cone, we project it upward onto the horizontal ceiling plane,
a plane orthogonal to the axis of the cone and passing through its vertex V , as
indicated in Figure 6.22.

ceiling plane

projection C0

V
r(ϕ)

R(θ)

axiscurve C

r(ϕ) = R( ) sinα

R( )

α

α

Figure 6.22: Curve C on the cone projects onto curve C0 in the ceiling plane with polar
equation r = r(ϕ).

The curve C projects onto a curve C0 in the ceiling plane that we describe with
a polar equation r = r(ϕ), where r(ϕ) is the radial distance measured from V as
origin. The ceiling projection C0 is the profile of a vertical cylinder that intersects
the cone along C. Figure 6.22 reveals that the distancesR(θ) and r(ϕ) satisfy r(ϕ) =
R(θ) sin α, where α is half the vertex angle of the cone. This simple relation,
together with (6.19), shows that the ceiling projection is the key that unlocks the
basic problem, as revealed in Theorem 6.6.

Theorem 6.6. Let C be a curve on the surface of a cone with vertex angle 2α. If
the ceiling projection C0 has polar equation r = r(ϕ), then the unwrapped image of
C has polar equation

R(θ) = kr(kθ), (6.20)

where k = 1/ sinα. Conversely, if R(θ) is known, then (6.20) determines r(ϕ):

r(ϕ) = R(ϕ/k)/k. (6.21)

θ

θ
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194 Chapter 6. UNWRAPPING CURVES

Proof. The relation r(ϕ) = R(θ)sin α becomes r(ϕ) = R(θ)/kwhich, in view of
(6.19), gives (6.20) and (6.21).

Before discovering Theorem 6.6, we solved the basic problem for the special case
of an unwrapped conic, using a lengthy brute force analysis of the solid geometry of
the cone. To our surprise, the resulting formula for R(θ) in (6.25) resembled that
of an ordinary conic. An analysis of this formula suggested introducing the ceiling
projection, which applies not only to conic sections, but to any curve C lying on a
cone.

6.15 CEILING PROJECTION AND UMBRELLA TRANSFORMATION

Equation (6.21) is the end result of three transformations: projecting C onto C0,
which produces r(ϕ); stretching each radial distance r(ϕ) by the factor k; and
squeezing the polar angle ϕ by the factor 1/k. The first two can be combined into
one transformation given by

R(θ) = kr(ϕ), (6.22)

which is a scaled version of the ceiling projection.

ceiling plane
projection C0 R(θ) = kr(ϕ)

scaled C0

R(θ)

curve C

V

Figure 6.23: An umbrella transformation (6.22) maps C from the cone onto a scaled
version of projection C0.

To visualize (6.22) geometrically, regard the cone as an umbrella that can be
opened up flat onto the ceiling plane by rotating each generator vertically upward
about V , as suggested by the example in Figure 6.23. The rotation preserves radial
distances from the vertex, but increases angles between generators on the cone.
Two generators separated by an angle θ measured along the surface of the cone lie
on two vertical planes through the axis making a dihedral angle ϕ, and during the
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rotation the umbrella transformation stretches the angle between them from θ to
ϕ = kθ.

6.16 CONE TO CONE

The analysis used to prove Theorem 6.6 also treats the more general case in which
a curve C1 on one right circular cone with vertex angle 2α1 is unwrapped onto a
curve C2 on another right circular cone having the same vertex but with vertex
angle 2α2. When the vertex angle 2α2 is a straight angle, the second cone becomes
an unwrapping plane. When we unwrap one cone onto another it is understood
that we keep the cones tangent to each other along a common rolling generator.

The next theorem relates the ceiling projection functions of curves C1 and C2.

Theorem 6.7. If the ceiling projection of curve C1 has polar equation r1 = r1(ϕ),
and that of curve C2 has polar equation r2 = r2(ϕ), then

r2(ϕ) = μr1(μϕ), (6.23)

where μ = sinα2/ sinα1.

Proof. When we unwrap one cone with vertex angle 2α1 onto another having the
same vertex but with vertex angle 2α2, angle θ and distance R(θ) from the common
vertex to a common point P on the two curves are the same on both cones. In
other words, both curves obviously coincide when unwrapped onto a plane. Hence
by (6.20) we have R(θ) = k1r1(k1θ) and R(θ) = k2r2(k2θ), which implies

r2(k2θ) = (k1/k2)r1(k1θ).

Let μ = k1/k2 = sinα2/ sinα1, and let ϕ = k2θ. Then k1θ = μϕ and the foregoing
equation becomes (6.23).

When k2 = 1, cone 2 coincides with its ceiling plane, ϕ = θ, r2 = R, r1 = r, and
(6.23) turns into (6.20). Note also that μ < 1 if cone 1 has a larger vertex angle
than cone 2, and, vice versa, μ > 1 if cone 2 has a larger vertex angle than cone 1.

6.17 UNWRAPPING A CONIC SECTION FROM A CONE TO A PLANE

Now take C to be a conic section cut from a cone by a plane inclined at an angle
β with the ceiling plane, where 0 ≤ β < π/2. The cutting plane intersects the axis
of the cone at a point O that we use as the center of a circular base of radius ρ
(Figure 6.24). As before, α is half the vertex angle of the cone, where 0 < α < π/2.
In Figure 6.24, C is shown as an ellipse, but the analysis also applies to a parabola
or hyperbola. The generator through point P on C intersects the base at point B
whose polar coordinates in the plane of the base are (ρ, ϕ), where ϕ is measured
from OA, where A = (ρ, 0). The case β = 0 corresponds to unwrapping the base,
which was treated earlier. Figure 6.24 also shows the ceiling projection C0 of C.
The following theorem solves the unwrapping problem for a conic, and also includes
a surprising result in part (a).
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projected conic C
ceiling plane directrix

β

α

ϕρ

cutting plane

h

P

P

0

d

L

conic C

BA

O

0

V
r

Figure 6.24: Diagram for proving parts (a), (b), (c) of Theorem 6.8. The ceiling plane
intersects the cutting plane along the directrix of the projected conic.

Theorem 6.8. The ceiling projection of a conic section C is another conic C0 with
(a) a focus at the vertex of the cone,
(b) a directrix at the line of intersection of the cutting plane and the ceiling plane,
(c) eccentricity λ = tanα tanβ,
(d) polar equation

r(ϕ) =
r(0)

1 + λ sinϕ
. (6.24)

Thus, if k = 1/ sinα, the unwrapped image of C on a plane has polar equation

R(θ) =
kr(0)

1 + λ sin(kθ)
. (6.25)

Proof. Let L denote the line of intersection of the cutting plane and ceiling
plane. For a point P on C, let P0 denote its projection on C0. Let d be the distance
from P0 to L, and r the distance from P0 to V, as shown in Figure 6.24.

We now show that the eccentricity ratio r/d is tan α tanβ, a constant (indepen-
dent of P0) that we denote by λ. This will prove (a), (b), and (c). Write the ratio
r/d as

r

d
=

r

h

h

d
,
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6.17. UNWRAPPING CONIC FROM CONE TO PLANE 197

where h is the distance from P to P0. From Figure 6.24 we infer that r/h = tanα
and h/d = tanβ, hence r/d = tanα tanβ, as required.

To derive (6.25), use the focus V as origin in the ceiling plane, and let r(ϕ)
denote the distance from V to the point on C0 with polar coordinates (r(ϕ), ϕ),
where ϕ is measured from a line through the focus parallel to the directrix, as in
Figure 6.25.

focus V

ϕ

r(ϕ) sinϕ

r(ϕ)

d

D

directrix L

Figure 6.25: Diagram for deriving the polar equation of projected conic C0.

Because C0 is a conic with eccentricity λ, the focal definition of conic gives
r(ϕ) = λd. But d = D − r(ϕ) sinϕ, where D is the distance from the focus to the
directrix, so r(ϕ) = λ(D − r(ϕ) sinϕ), which when solved for r(ϕ) gives r(ϕ) =
λD/(1 + λ sinϕ). When ϕ = 0 we get λD = r(0), which proves (6.24), and (6.25)
follows by Theorem 6.6.

The ratio e = (sinβ)/(cosα) is known to be the eccentricity of the conic section
C in Figure 6.24. It is easily verified that e = λ = 1 when α + β = π/2, that
0 < e < 1 and 0 < λ < 1when α + β < π/2, and that e > 1 and λ > 1 when
α + β > π/2. Therefore C and its ceiling projection C0 are of the same type:
ellipse, parabola, or hyperbola. Although their eccentricities may differ, both are
simultaneously less than 1, equal to 1, or larger than 1.

In Theorem 6.8, the relations between the parameters λ, k and the angles α, β
imply the restrictions λ ≥ 0, k ≥ 1. The inequality λ ≥ 0 is not serious, because
changing the sign of λ in (6.25) is equivalent to replacing θ by −θ, which means the
unwrapping occurs in the opposite direction. The restriction k ≥ 1 is more serious
because k = 1/sin α. However, (6.25) is meaningful for all real λ and k and gives a
function R(θ), periodic in θ with period 2π/k, that represents a well-defined curve
even if k < 1. This motivates the following notion of a generalized conic.

Definition. For constants R0 ≥ 0, λ ≥ 0, and real k, a plane curve described
by the polar equation

R(θ) =
R0

1 + λ sin(kθ)
, (6.26)

is called a generalized conic.
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198 Chapter 6. UNWRAPPING CURVES

The curve is called a generalized ellipse, parabola, or hyperbola, according as
λ < 1, λ = 1, or λ > 1, respectively.

If k = 1, the cone is its ceiling plane, and (6.26) is the polar equation in this plane
of a conic with eccentricity λ and with one focus at the origin. If k > 1,Theorem
6.8 tells us that the curve in (6.26) is obtained by unwrapping a conic section of
eccentricity λ from a cone with vertex at the origin and vertex angle 2α, where
sinα = 1/k. If k < 1, the curve in (6.26) cannot be obtained by unwrapping a conic
section from a cone onto a plane, but it can be realized as the ceiling projection of
a curve C on a cone K ′ with vertex angle 2α′, where sinα′ = k, and where C is
obtained by wrapping a conic of eccentricity λ from a plane onto K ′. In terms of
equations, a conic with polar equation (6.24) is the unwrapped version of a curve C
on a cone K ′ with vertex at a focus of (6.24) and with ceiling projection described
by (6.25).

6.18 EXAMPLES OF GENERALIZED CONICS

Examples are shown in Figures 6.26 through 6.31. In Figures 6.26, 6.27, 6.28, the
angle θ runs through one period interval of length 2π/k, and in Figure 6.29 through
more than one period interval. In Figures 6.26 to 6.29, each example has k > 1 and
can be obtained by unwrapping a conic section from a cone onto a plane. In Figures
6.30 and 6.31, each example has k < 1, namely k = 1/2, and cannot be obtained
by unwrapping a conic from a cone.

k = 1.5, λ = 0.6 k = 5.5, λ = 0.22

Figure 6.26: Generalized ellipses, one period.

k = 1.5, λ = 1 k = 1.15, λ = 1

Figure 6.27: Generalized parabolas, one period.
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k = 1.5, λ = 1.6 k = 1.83, λ = 1.8

Figure 6.28: Generalized hyperbolas, one period. Both nappes are cut and unwrapped.

five periods eleven periods 

Figure 6.29: Generalized ellipses as in Figure 6.26b (k = 5.5, λ = 0.22), with more than
one period.

(a) (b) (c)
generalized ellipse generalized parabola generalized hyperbola

λ = 0.8 λ = 1 λ = 1.4

Figure 6.30: Generalized conics with k = 0.5 in (6.26). They cannot be obtained by
unwrapping a conic from a cone, but each is the ceiling projection of a conic wrapped from
a plane onto a cone.

Figure 6.31: Generalized ellipse in Fig. 6.30a as ceiling projection of a curve obtained by
wrapping an ellipse onto a cone with vertex angle π/3 to form a curve with two loops.
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6.19 LIMITING CASES

From a given cone, one can obtain all possible ellipses and parabolas as conic sec-
tions, but not all hyperbolas, only those whose asymptotes intersect at an angle
smaller than the vertex angle of the cone. By contrast, all possible conics can be
obtained as limiting cases of (6.26), as will be shown presently.

First we show that sinusoidal curves unwrapped from circular cylinders are lim-
iting cases of generalized conics. In the plane of the unwrapped cone (Figure 6.20b),
the difference y = R(0)−R(θ) is the radial distance from the image of the circular
base to the generalized conic. From (6.26) we have R0 = R(0), and we obtain

y = R(0)
λ sin(kθ)

1 + λ sin(kθ)
. (6.27)

Keep the radius ρ of the base fixed and keep the angle of inclination β fixed,
but let α→ 0 so the vertex of the cone recedes to infinity. Then the cone becomes
a cylinder of radius ρ (which can be regarded as the limiting case of a cone).

What happens to the right-hand side of (6.27) as α→ 0?

For small α, we can approximate tan α by sinα, so the product λ = tanα tanβ
can be approximated by sinα tanβ. The denominator of (6.27) is very close to 1,
so its right member has the approximate value

R(0) sinα tanβ sinϕ,

where ϕ = kθ. But, in view of (6.17), R(0) sinα = ρ, hence (6.27) is nearly the
same (for small α) as the limiting relation

y = ρ tanβ sinϕ = ρ tanβ sin(x/ρ),

where x is the length of arc subtended by an angle ϕ on a circle of radius ρ. This
is a cartesian equation of a sinusoidal curve cut from a circular cylinder of radius
ρ by a plane inclined at angle β. In other words, if the circular base of the cone is
kept fixed while the vertex recedes to infinity, the cone becomes a cylinder, and the
generalized ellipse unwrapped from the cut cylinder becomes a sinusoidal curve, as
introduced in Section 6.2.

The other limiting case is when α→ π/2 and the cone flattens onto the ceiling
plane. In this case we keep R(0) and λ fixed, so that tanβ = λ/ tanα. Then
tanα → ∞, β → 0, and k = 1/ sinα → 1, and the limiting value of the polar
equation (6.25) is

R(θ) =
R(0)

1 + λ sin θ
. (6.28)

This describes an ordinary conic section of eccentricity λ, where R(θ) is the
distance from a focus to the point (R(θ), θ) on the conic, as shown in Figure 6.25.
Geometrically, as α→ π/2 and the cone flattens onto its ceiling plane, with tanβ =
λ/ tanα, the conic section of eccentricity λ turns into the conic described by (6.28),
which is the ceiling conic (6.24). In other words, as the cone flattens onto a plane,
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the limiting case of the conic section coincides with the ceiling conic having its focus
at the vertex, and it also coincides with the limiting case of the generalized conic.
All three types of conics, ellipse, parabola and hyperbola, with all possible values
of the eccentricity, can occur in the limiting case.

6.20 OTHER CURVES ON A CONE

In addition to conic sections, there are other interesting curves on a cone that we
can analyze using our transformations. In each of the next two examples, the curve
is determined by specifying its ceiling projection C0 to be a spiral, and we find that
the unwrapped curve is a spiral of the same type.

Example 14 (Archimedean spiral). Here r(ϕ) = cϕ for a constant c > 0.
In the ceiling plane, C0 intersects a radial line at equidistant points, with distance
2πc between consecutive intersections. The curve C spirals around the cone as
shown in Figure 6.32. From (6.20) we find

R(θ) = ck2θ.

The unwrapped curve is an Archimedean spiral with c replaced by ck2.

Figure 6.32: A conical spiral, with an Archimedean spiral as ceiling projection and as
unwrapped curve.

Example 15 (Logarithmic spiral). Now r(ϕ) = Aecϕ for constants A >
0, c > 0. In the ceiling plane, the tangent line to the spiral at each point makes a
constant angle δ with the radial line to that point, where cot δ = c. From (6.20)
we obtain R(θ) = kAeckθ, hence the unwrapped curve is another logarithmic spiral
with new constants. Its tangent line makes a constant angle ψ with the radial line,
where cot ψ = ck.
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202 Chapter 6. UNWRAPPING CURVES

Example 16 (Geodesic on a cone). Because distances are preserved when a
cone is unwrapped, the image of a geodesic arc on a cone (the shortest path joining
two points on the surface) is a line segment in the plane of the unwrapped cone.
To construct a geodesic curve on a cone, start with a straight line and wrap it onto
the cone. Figure 6.33a shows a line L and a point V not on the line that we take
as the vertex of an unwrapped cone. The entire line has polar equation

R(θ) =
d

cos θ
,

where d is the shortest distance from V to the line, and θ varies from −π/2 to π/2.
The plane determined by the line and V can be rolled into many right circular cones
with V as a common vertex but with different vertex angles, and the line is mapped
onto a geodesic curve on each such cone. If the cone has vertex angle 2α, the ceiling
projection of the geodesic has polar equation

r(ϕ) =
d/k

cos(ϕ/k)
,

where k = 1/ sinα and −kπ/2 < ϕ < kπ/2. Figures 6.33b and c show one example
of a geodesic and its ceiling projection. Figure 6.34 shows more ceiling projections.

V

θ
d

L

(a) (b) (c)

Figure 6.33: Line segment in (a) wrapped onto a geodesic on a cone in (b), with ceiling
projection (c).

k = 1 k = 2 k = 2.5 k = 3 k = 4 k = 5

Figure 6.34: Ceiling projections of one line wrapped onto cones with different vertex
angles (sinα = 1/k).
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6.21. VERTICAL WALL PROJECTION 203

6.21 VERTICAL WALL PROJECTION

Analyzing the unwrapped version of a curve on the lateral surface of a cone is equiv-
alent, by Theorem 6.6, to finding its ceiling projection. We turn now to examples in
which the curve C is the intersection of the cone with a horizontal cutting cylinder
whose generators are parallel to the ceiling plane. The projection of C on a vertical
plane perpendicular to the generators is a profile of the cylinder.

We choose such a plane through the axis of the cone and call it the wall plane.
It intersects the ceiling plane along a line we designate as the t axis, with its origin
at V , as shown in Figure 6.35. The axis of the cone is designated the z axis, but
with its positive direction pointing down as indicated in Figure 6.35. If the cone is
flipped over and the ceiling plane becomes a horizontal floor plane, the coordinate
axes of the wall plane will be in traditional position, with the positive t axis pointing
to the right, and the positive z axis pointing up.

t

t

V

P0

α
h(t)

curve Cwall projection
P1 P

ϕ
r(ϕ)

ceiling projection

z-axis

Figure 6.35: Relating the wall projection and ceiling projection of a curve on a right
circular cone.

The cutting cylinder intersects the wall plane along a profile curve with implicit
equation of the form p(t, z) = 0. We call this curve the wall projection of C. A
point P on C has point P0 as ceiling projection with polar coordinates (r, ϕ),where
ϕ is measured as indicated in Figure 6.35, and r = r(ϕ) is the ceiling function. The
point P also has wall projection P1 with coordinates (t, z) related by p(t, z) = 0. The
next theorem, which follows at once from Figure 6.35, relates the coordinates (t, z) of
P1 with the polar coordinates (r, ϕ) of P0.
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Theorem 6.9. On a right circular cone with vertex angle 2α, let c = tan α, and let
C be a curve with ceiling projection function r = r(ϕ), and wall profile p(t, z) = 0.
Then the coordinates are related by

t = r sinϕ, z =
r

c
. (6.29)

Consequently,

ϕ = arcsin(
t

r
), r = cz, (6.30)

and
p(r sinϕ, r/c) = 0.

In particular, if the wall profile gives z explicitly as a function of t, say z =
h( t), then

r(ϕ) = ch(r(ϕ) sinϕ) (6.31)

and

ch(t) = r(arcsin(
t

ch(t)
)). (6.32)

The following examples specify the wall projection and determine r(ϕ).

Example 17 (Linear wall projection: h(t) = at + b). The cutting cylinder
in this case is a plane, and (6.31) becomes

r(ϕ) = c(ar(ϕ) sinϕ+ b),

which can be solved for r(ϕ) to yield

r(ϕ) =
bc

1− ac sin ϕ
.

As expected, this is the polar equation of a conic section.

Example 18 (Circular cutting cylinder of radius 1). Cut the cone with
a circular drill of radius 1, perpendicular to the axis of the cone, whose center in
the tz plane is at the point (w, d). Then the wall projection satisfies the implicit
equation

(t− w)2 + (z − d)2 = 1.

From (6.29) we find (r(ϕ) sinϕ − w)2 + ( r(ϕ)
c − d)2 = 1, which is quadratic in the

ceiling projection function r(ϕ).
If w = 0, the axis of the cutting cylinder passes through the axis of the cone and

the quadratic equation simplifies to

(r(ϕ) sinϕ)2 + (
r(ϕ)

c
− d)2 = 1. (6.33)

A graphing calculator can draw the graphs of (6.33), revealing the ceiling pro-
jection of the hole for various values of c and d. Figure 6.36a shows snapshots on
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d = − 0.9

d = − 0.5

d = 0

d = 1

d = 1.3

d =    2

d = 2

d = 1.5

c = 3

c = 2

c = 1

c = 0.5

c = 0.1

c = 0

(a) α = π/4 (b) c = tan α

Figure 6.36: Snapshots of ceiling projection of a horizontal hole of radius 1 drilled through
the axis. In (a) the cone is fixed and the coordinate d varies. In (b) the drill is fixed at
d = 0 and the vertex angle changes.

one nappe only for c = 1 and increasing d, and Figure 6.36b shows snapshots for
d = 0 and increasing c.

Powerful 3-D modeling programs can be used to render the qualitative shape
of the curve of intersection of a cone and a cutting cylinder. But exact equations
like those derived here provide a deeper understanding, and are also useful when
graphing projection functions such as those in Figure 6.36 with simple 2-D programs.

In Figure 6.36a the vertex angle 2α of the cone is π/2. For small d the projection
is an oval curve, which gradually changes its size and shape as d increases. At some
stage it is pierced by a hole that increases in size until d =

√
2, when the ceiling

projection turns into two overlapping confocal ellipses. As d increases further,
the ceiling projection splits into two symmetrically disconnected pieces that move
further apart.

In Figure 6.36b, the axis of the drill passes through the vertex of the cone and
the snapshots show how the ceiling projection of the hole varies as the vertex angle
of the cone increases. We were surprised to learn that all the projected curves in
Figure 6.36b are ellipses! This is easily verified by writing (6.33) in rectangular
coordinates. Incidentally, the example with d = 0 in Figure 6.36a is one of the
ellipses.
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6.22 CEILING AND WALL PROJECTIONS OF A ROTATED CURVE

To view a curve on a cone from different directions perpendicular to the axis of
the cone, we simply rotate the cone about its axis to see how the ceiling projection
changes, then use Theorem 6.9 to determine the corresponding wall projection.
Specifically, take a curve C on a cone with ceiling projection r = r(ϕ), and rotate
the cone through an angle γ about its axis, measured counterclockwise when viewed
from above the ceiling plane. The rotation replaces ϕ by ϕ + γ, so the ceiling
projection rγ(ϕ) of the rotated curve is

rγ(ϕ) = r(ϕ+ γ). (6.34)

As the next example shows, rotation can alter dramatically the appearance of the
wall projection.

Example 19 (Parabolic cutting cylinder). Cut the cone with a parabolic
cylinder whose wall projection is z = b − at2, where a and b are constants, a �= 0.
The wall projection is a parabola that opens downward if a > 0 and upward if a < 0
(because the z axis points down.) By (6.29) the corresponding ceiling projection
satisfies

r(ϕ)

c
= b− ar2(ϕ) sin2 ϕ.

When expressed in rectangular coordinates, with

x = r(ϕ) cosϕ, y = r(ϕ) sinϕ,

this equation has degree 4 in y and degree 2 in x.
Now rotate the cone through a right angle (γ = π/2). By (6.34), the rotated

curve has ceiling projection rπ/2(ϕ)/c = b − ar2π/2(ϕ) cos
2ϕ, which can also be

written as
rπ/2(ϕ)

c
= b− ar2π/2(ϕ) + ar2π/2(ϕ) sin2 ϕ. (6.35)

To find the wall projection of the rotated curve, replace rπ/2(ϕ) by cz and replace
rπ/2(ϕ) sinϕ by t, using (6.29). Then (6.35) becomes

t2 − c2z2 − z

a
=

b

a
. (6.36)

This represents a hyperbola in the tz plane, regardless of the sign of a. In
other words, when a horizontal parabolic cylinder intersects a cone along a curve
C, the horizontal parabolic profile of this curve, when rotated through a right angle,
becomes a hyperbola! When the parabolic cylinder is tangent to two generators of
the cone, the hyperbola is degenerate, and the ceiling projection is two intersecting
confocal parabolas. The limiting case of (6.36) with c = 0 is worth noting. As
c → 0, the vertex angle of the cone tends to 0, the cone becomes a right circular
cylinder, and (6.36) becomes z = at2 − b. This is another derivation of a result
found in Section 6.6 (Figure 6.10). When a vertical circular cylinder is cut by a
parabolic cylinder and rotated by a right angle, the parabolic profile is flipped over.
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When the same analysis is applied to the parabolic cutting cylinder whose wall
projection is t = b − az2 the ceiling projection satisfies the equation r(ϕ) sinϕ =
b− ar2(ϕ)/c2,which, in rectangular coordinates, has the form

x2 + (y +
c2

2a
)2 =

c2

4a2
(c2 + 4ab).

When c2 + 4ab > 0 this represents a circle. In other words, a parabolic cylinder
with profile symmetric about the z axis cuts each nappe of the cone along a circle.
This also shows that if the cone is drilled by a circular cylinder with axis parallel to
the axis of the cone, the edge of the hole will appear as a parabola when viewed on
the vertical wall projection. If the cone is rotated through a right angle, the wall
projection of the rotated curve is given by c2z2 − t2 = (b− az2)2,which has degree
4 in z and degree 2 in t.

Example 20 (Central conic as profile of cutting cylinder; ceiling pro-
jection). Cut the cone with a horizontal cylinder whose profile is a central conic
(ellipse or hyperbola). A central ellipse is given by

(
t

a
)2 + (

z

b
)2 = 1, (6.37)

whereas a hyperbola is given by one of

(
t

a
)2 − (

z

b
)2 = 1, (6.38)

or

(
z

b
)2 − (

t

a
)2 = 1, (6.39)

depending on whether the axis through the foci is horizontal or vertical. The elliptic
cylinder and the second hyperbolic cylinder in (6.39) always cut the cone, but the
first hyperbolic cylinder in (6.38) may or may not, depending on how the angle
between its asymptotes compares with the vertex angle of the cone.

The elliptic case is simplest so we treat it first. In this case (6.37) and (6.29)
give us

r2(
b2c2

a2
sin2 ϕ + 1) = b2c2. (6.40)

In rectangular coordinates with origin at the cone’s vertex we have sinϕ = y/r, and
(6.40) can be written as a2r2 + b2c2y2 = a2b2c2, which, on replacing r2 by x2 + y2,
becomes

a2x2 + (a2 + b2c2)y2 = a2b2c2.

This shows that the ceiling projection is always an ellipse with its center at the
vertex.

The same argument, applied to (6.38), gives

(b2c2 − a2)y2 − a2x2 = a2b2c2. (6.41)
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208 Chapter 6. UNWRAPPING CURVES

This represents a hyperbola if b2c2 > a2 and the empty set if b2c2 < a2. This
can also be seen geometrically. Recall that c = tanα, and note that the slopes
of the asymptotes are ±a/b. When b2c2 < a2 the angle between the asymptotes
is greater than the vertex angle of the cone and the hyperbolic cylinder does not
cut the cone. But if b2c2 > a2 the hyperbolic cylinder cuts the cone into two
separate pieces that project onto the ceiling plane as two branches of the hyperbola
in (6.41). If b2c2 = a2 the hyperbolic cylinder degenerates to two planes whose angle
of intersection is the vertex angle of the cone, and the ceiling projection consists of
a single point, the vertex.

When the same argument is applied to (6.39) we find

a2x2 + (a2 − b2c2)y2 = a2b2c2. (6.42)

In this case, the ceiling projection is an ellipse or a hyperbola, according as b2c2 < a2

or b2c2 > a2. If b2c2 < a2 the hyperbolic cylinder cuts the cone along a curve that
appears as a hyperbola when viewed along the horizontal direction of the cylinder,
but as an ellipse when viewed along the cone’s axis.

Example 21 (Central conic as profile of cutting cylinder; rotated wall
projection). Now rotate the cone in Example 20 through a right angle and de-
termine the wall projection of the rotated curve. First we determine the ceiling
projection of the rotated curve.

When we apply (6.34) with γ = π/2 to (6.40), which comes from the elliptic
cutting cylinder in (6.37), the term sin2 ϕ is replaced by cos2 ϕ = 1− sin2 ϕ, and r
becomes rπ/2. In the rotated ceiling polar equation, replace rπ/2 by cz and sinϕ by
t/(cz), to obtain

(a2 + b2c2)z2 − b2t2 = a2b2, (6.43)

which represents a hyperbola. In other words, an elliptic cutting cylinder intersects
a cone along a curve C that appears as an ellipse (expected) when viewed along the
horizontal direction of the cylinder, but as a hyperbola (unexpected!) when viewed
from a perpendicular horizontal direction.

We can do the same for each of the hyperbolic cutting cylinders in (6.38) and
(6.39). From (6.41) we find the rotated wall projection is given by

(b2c2 − a2)z2 − b2t2 = a2b2. (6.44)

In this case the cylinder cuts the cone only if b2c2 > a2, in which case (6.44) repre-
sents a hyperbola. In other words, both the ceiling projection (6.41) and the rotated
wall projection are hyperbolas.

The situation is different for the second hyperbolic cutting cylinder in (6.39).
The ceiling projection in (6.42) is an ellipse if b2c2 < a2 and a hyperbola if b2c2 > a2.
When the cone is rotated through a right angle, the rotated wall projection is given
by (a2 − b2c2)z2 + b2t2 = a2b2.

This is an ellipse if b2c2 < a2 and a hyperbola if b2c2 > a2, so the rotated wall
projection is the same type of curve as the ceiling projection.
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Example 22 (Side view of a particular geodesic). In Example 16 we found
that a geodesic on a cone has ceiling projection function

r(ϕ) =
d/k

cos(ϕ/k)
.

A surprising result occurs on a cone with k = 2 (vertex angle 2α = π/3). The
ceiling projection satisfies

r2(ϕ) = 2d2/(1 + cos ϕ).

When rotated through a right angle, this gives a new ceiling projection function
r2(ϕ) = 2d2/(1−sinϕ),with corresponding wall projection

cz(cz − t) = 2d2,

where c = tan(π/6).
The quadratic form cz2− czt has a negative discriminant, so the wall projection

is a hyperbola. In other words, on this cone, a side view of a geodesic appears as
exactly half of one branch of a hyperbola.

Examples 19 through 22 reveal some of the unexpected results referred to in
Section 6.12. If a hyperbolic cylinder cuts a cone, the curve of intersection appears
in different directions not only as a hyperbola, but also as an ellipse, a parabola, or
even a geodesic.

6.23 TILTED WALL PROJECTION

In the foregoing discussion, the cutting cylinder has generators parallel to the ceiling
plane. In descriptive geometry, and in applications to sheet metal work, the cutting
cylinder is not always parallel to the ceiling plane but may be tilted at an angle β.
By tilting the wall plane about the t axis we can relate the profile of C on the tilted
plane with the original wall and ceiling projections.

Introduce a tilted z′ axis by rotating the vertical z axis about the horizontal
t axis by an angle β, as shown in Figure 6.37. Let z′ = q(t) denote the explicit
equation of the profile of the tilted cylinder, and let P be a point on the curve C
of intersection of the tilted cylinder with the cone. Point P has wall projection
P1 and ceiling projection P0. Figure 6.37 shows P, P0, and P1 in a vertical plane
perpendicular to the t axis. In this plane, viewed along the t axis, q(t) is the sum
of two lengths, h(t) cos β and x sin β, where x = r(ϕ)cos ϕ and h(t) is the distance
from P0 to P . Therefore we have the following equation relating the tilted profile
function q(t) with the wall profile h(t) and the ceiling projection r(ϕ) :

q(t) = h(t) cosβ + r(ϕ) cosϕ sinβ. (6.45)

The wall projection function h(t) is related to the ceiling projection r(ϕ) by
Theorem 6.9, and (6.45) determines the tilted profile function q(t) in terms of the
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wall profile h(t)

β

β

x

h(t)

h(t) cos β

q(t) tilted profile

P1

P0

P

x z'

Figure 6.37: Profile of a tilted cutting cylinder expressed in terms of the wall profile and
ceiling projection.

tilting angle β. To relate q(t) and h(t) directly, use Theorem 6.9 to get r(ϕ) =
ch(t), and rewrite (6.45) as

q(t) = h(t) cosβ + ch(t) cosϕ sinβ. (6.46)

For a relation not involving ϕ, recall from (6.29) that ch(t) sinϕ = t. Hence

ch(t) cosϕ = ch(t)

√
1− sin2ϕ =

√
c2h2(t)− t2

and (6.46) takes the form (6.47) in the following theorem.

Theorem 6.10. A tilted cylinder whose generators make an angle β with the ceiling
plane, and which has tilted profile function z′ = q(t), intersects a cone of vertex angle
2α along a curve whose vertical wall profile z = h(t) is related to q(t) by

q(t) = h(t) cosβ +
√

c2h2(t)− t2 sinβ, (6.47)

where c = tan α.

This expresses the tilted profile q(t) directly in terms of the wall profile h(t) and
the angles α and β. Also, if q(t) is given, we can use (6.47) to find h(t) by solving
a quadratic equation. For example, if q(t) = at + b, the slanted cutting cylinder
is a plane. If we put z = h(t), then (6.47) becomes quadratic in z and t, and the
horizontal profile is a conic, as expected.

6.24 ARCLENGTH AND AREA

When a curve of length L on a cone is unwrapped onto another curve, the arclength
L remains unchanged because distances are preserved. For example, the generalized
ellipse in Figure 6.20b has the same length as the ellipse in Figure 6.20a, even though
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6.24. ARCLENGTH AND AREA 211

there is no simple formula for calculating the arclengths. In general, any unwrapped
curve has the same length as its wrapped version on the cone.

Unwrapping also preserves areas. In Figure 6.21, a portion of the circular cone
unwraps onto a circular sector with central angle θ as shown in Figure 6.21b, with
area s2θ/2. This sector, the unwrapped portion of the cone, has the same area,
which, by (6.17), is given by ρsϕ/2. In particular, when ϕ = 2π, each of the areas
is equal toπρs.

More generally, we can ask for the sectorial area A(θ1, θ2) of the region bounded
by the unwrapped image of any curve C on the cone and two rays θ = θ1 and θ = θ2
emanating from the origin. When θ1 < θ2 the area is given by

A(θ1, θ2) =
1

2

∫ θ2

θ1

R2(θ) dθ, (6.48)

where R(θ) is determined by (6.26). Because areas are preserved when unwrapping
a cone, the integral has the same value as the lateral surface area of the portion of
the cone between the vertex and the original curve C on the cone. The change of
variable ϕ = kθ transforms the integral in (6.48) to

A(θ1, θ2) =
1

2k

∫ kθ2

kθ1

R2(ϕ/k) dϕ.

Because of (6.21) we can write this as

A(θ1, θ2) = k(
1

2

∫ ϕ2

ϕ1

r2(ϕ) dϕ) (6.49)

where r(ϕ) is the ceiling projection function for C0, and ϕi = kθi. The factor
multiplying k in (6.49) is the sectorial area of the region in the ceiling plane bounded
by C0 and the rays ϕ = ϕ1 and ϕ = ϕ2. Equation (6.49) can be stated as

Theorem 6.11. On a cone of vertex angle 2α, the lateral surface area of the portion
of the cone between the vertex and an arc of the original curve C on the cone is k
times the area of the corresponding ceiling projection, where k = 1/ sin α.

This is to be expected, because a thin triangle of area T formed by two nearby
generators on the lateral surface of the cone, with one vertex at the vertex of the
cone, projects onto the ceiling plane onto a triangle with area T0 = T sinα, hence
T = kT0.

Although Theorem 6.11 refers to an unwrapped sectorial region, it implies a more
general result for regions lying between two curves C1 and C2 with corresponding
unwrapping functions R1 and R2, and two rays θ = θ1 and θ = θ2. The integral

1

2

∫ θ2

θ1

|R2
2(θ)−R2

1(θ)| dθ

gives the area of both the unwrapped region and the corresponding region on the
cone. Each of the areas is k times the area of the corresponding ceiling projection.
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Again this is to be expected because an elemental region of area T on the cone
projects onto the ceiling plane as a region of area T0 = T sinα, so T = kT0. The
next example gives a surprising consequence of this result.

Example 23 (Surface area cut from a cone by a vertical drill). In
Example 19 we learned that a circular drill with its axis parallel to that of a cone cuts
a hole on the surface of the cone whose edge appears (unexpectedly) as a parabola
when viewed on the vertical wall projection. The geometric argument supporting
Theorem 6.11 gives another unexpected result. The region on the surface of the
cone has area k times that of the ceiling projection, which is constant for a vertical
drill, even if the hole is not circular. In other words, the surface area removed
from a cone by a vertical puncturing tool of cross-sectional area A is equal to kA,
regardless of the shape or location of the tool.

We conclude with an interesting observation concerning the elliptical cross sec-
tion cut by a plane inclined at angle β as shown Figure 6.20a. Let E denote the area
of the elliptical disk, and let S denote the lateral surface area of the finite portion
of the cone with vertex angle 2α cut off by the disk. On the one hand, the ceiling
projection of the ellipse has area E cosβ, and on the other hand, it is S sinα. This
simple result for the ellipse must surely be known, but we could not find it in the
literature. It deserves to be better known, so we state it here as a theorem.

Theorem 6.12. The area E of an elliptic cross-sectional disk, and the lateral
surface area S of the finite portion of the cone cut off by the plane of the disk,
satisfy

S sinα = E cosβ.

NOTES ON CHAPTER 6

Most of the material in this chapter was originally published in [19], which was
awarded a Lester R. Ford Award in 2008.
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Chapter 7

NEW DESCRIPTIONS OF
CONICS VIA TWISTED
CYLINDERS, FOCAL
DISKS, AND DIRECTORS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

An ellipse is a cross section of a circular cylinder cut by an inclined plane. Two
spheres inscribed in the cylinder intersect the cutting plane to form two circular
disks as in (a), called focal disks, shown in (b) in the cutting plane.

P

P

(a) (b) (c)

Prove that the sum of the lengths of the tangent segments from P to the two
focal disks is constant.

For an ellipse, find two focal disks such that the absolute difference of the lengths
of the tangent segments from a point P on the ellipse to the disks is constant.

The two shaded disks in (c) are plane sections of spheres inscribed in a hyper-
boloid of revolution. What can be said about the sum and difference of lengths of
the tangent segments from a point on the hyperbolic cross section to the two disks?

213
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7

From any point of an ellipse the sum of distances to its two foci is constant.

For a hyperbola the absolute difference of these distances is constant. These

properties are generalized to provide a unified characterization of all conics,

including the parabola! We inscribe Dandelin-type spheres in a twisted cylin-

der (hyperboloid) rather than a cone, and pierce the cutting plane to produce

focal disks. Focal distances are replaced by lengths of tangent segments to

these disks. For each conic and any pair of focal disks, the sum of tangent

distances is a constant on some portions of the conic, while on the remaining

portions their difference is the same constant! Each conic now has infinitely

many focal disks, resulting in a rich variety of configurations, some of which

cannot occur on a cone. Special cases reveal many surprises. For example,

the absolute difference of tangent distances can be constant everywhere on an

ellipse or a parabola! Our approach also leads naturally to a generalization of

the classical focus-directrix-eccentricity description of conics.

7.1 INTRODUCTION

Conics have been investigated since ancient times as sections of a circular cone.
Surprising descriptions of these curves are revealed by investigating them as sections
of a hyperboloid of revolution, referred to here as a twisted cylinder. We generalize
the classical focus-directrix property of conics by what we call the focal disk-director
property (Section 7.2). We also generalize the classical bifocal properties of central
conics by the bifocal disk property (Section 7.5), which applies to all conics, including
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216 Chapter 7. NEW DESCRIPTIONS OF CONICS

the parabola. Our main result (Theorem 7.5) is that the two generalized properties
are satisfied by sections of a twisted cylinder, and by no other curves.

Twisted cylinders.

A circular cylinder is a ruled surface with its generators parallel to the axis of the
cylinder. Figure 7.1a shows a portion of a cylinder between two circular bases.
Rotate the lower circle about the axis to form a new ruled surface (Figure 7.1b),

(a) (b) (c)

Figure 7.1: Cylinder (a) and cone (c) as special cases of twisted cylinder (b).

all of whose generators make the same angle with the axis. Because the constancy
of this angle is fundamental in our analysis, we prefer to call the surface a twisted
cylinder rather than a hyperboloid of revolution. The circular cylinder and cone
are special cases. (For interactive Java animation see the website cited at the end
of this chapter.) In this chapter, all twisted cylinders have vertical axes.

In general, a section of a twisted cylinder by an inclined plane is analogous to
a section of a cone (Figure 7.2). For a small angle of inclination, the section is an
ellipse. When the cutting plane is tilted more to become parallel to a generator,
the section is a parabola. Tilting it further produces a hyperbola.

(a) ellipses (b) parabolas (c) hyperbolas

b.1 b.2 c.1 c.2 c.3

Figure 7.2: Intersections of a twisted cylinder with an inclined plane.

Differences between sections of a cone and of a twisted cylinder.

Significant differences are revealed when the cutting plane is translated. On a cone,
translation of the cutting plane always produces a similar conic, with the same
eccentricity. But on a twisted cylinder, as Figure 7.2b shows, a parabola b.1 can
degenerate into a pair of parallel lines b.2 (which we call a degenerate parabola).
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More dramatic changes occur when the intersection is a hyperbola, c.1. Figure 7.2c
shows two critical positions, c.2, at which the plane is tangent to the twisted cylin-
der, and the hyperbola degenerates into a pair of intersecting lines. Between these
critical positions there are intermediate flipped hyperbolas, c.3, whose eccentricity
is not the same as that of the hyperbolas in c.1. Further translation flips the hy-
perbola again, to sections similar to those in c.1. On a cone, the critical positions
coincide, and the flipped hyperbolas c.3 do not appear. In this chapter, the term
conic refers to any section of a twisted cylinder, including degenerate cases.

Focal disks.

Inscribe a sphere inside a twisted cylinder so it intersects the cutting plane along
a circular disk, shown shaded in Figure 7.3. This disk is in the plane of the conic,
and we call it a focal disk for that conic. If the sphere happens to be tangent to the

  (a) ellipses                     (b) parabolas                                       (c) hyperbolas

b.1 b.2 c.1 c.2 c.3

Figure 7.3: Inscribed sphere pierces the plane of the conic along a focal disk.

cutting plane, the focal disk is a point (which turns out to be a focus!). This can
occur in Figure 7.3 in (a), b.1, and c.1 but not in b.2 and c.3. In c.3 the foci of the
hyperbola are outside the twisted cylinder.

Families of focal disks.

By moving the sphere upward or downward through the cutting plane, keeping it
inscribed in the twisted cylinder, we obtain an infinite family of focal disks for a
given conic. Examples in the plane of the conic are shown for an ellipse in Figure

(a) (b) (c)

Figure 7.4: Families of focal disks associated with the conics in Figures 7.3a,b.

7.4a, a parabola in Figure 7.4b, and a degenerate parabola in Figure 7.4c. When
the ellipse is a circle the focal disks are concentric with it.
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218 Chapter 7. NEW DESCRIPTIONS OF CONICS

Figures 7.5a, b, and c show the focal disks obtained by moving an inscribed
sphere in Figure 7.3c, corresponding to the sections in c.1, c.2, and c.3.

(b)(a) (c)

Figure 7.5: Families of focal disks associated with the sections in Figure 7.3c. The family
in (c) does not contain the foci of the hyperbola and cannot occur on a cone.

Abnormal configurations.

A conic with its focal disks defines a configuration. Those configurations in Figure
7.4c and Figure 7.5c we call abnormal to emphasize that they cannot occur on a
cone. In them a focal disk cannot be shrunk to a focus, and a circular disk tangent
to both branches is a focal disk. The degenerate configuration in Figure 7.4c can
be regarded as a limiting configuration of Figure 7.5c. The configurations that can
occur on a cone we call normal.

The rest of the chapter is divided into three parts as follows:

Part 1: Focal disk-director description of noncircular conics (Sections 7.2-7.4).
Part 2: Bifocal disk description of conics (Sections 7.5-7.7).
Part 3: Supplementary results (Sections 7.8-7.13).

PART 1: FOCAL DISK-DIRECTOR DESCRIPTION OF
NONCIRCULAR CONICS

7.2 DISK-DIRECTOR RATIO. FOCAL DISK-DIRECTOR PROPERTY

In Figure 7.6a the inscribed sphere touches the twisted cylinder along a circle we call
a terminator, terminology borrowed from astronomy. If the cutting plane is parallel
to the plane of the terminator, the section is a circle and the focal disk is concentric
with the circle. Otherwise, the planes intersect along a line we call a director. The
section shown in Figure 7.6 is an ellipse, but it could be any noncircular conic.

In Figure 7.6b, let P denote a point on the conic, let PT be the length of a
tangent segment from P to the focal disk, and let PD be the distance from P to
the director.

We introduce the disk-director ratio q = PT/PD and show that the conic has
the following focal disk-director property:

Proposition 1. On a noncircular conic of intersection, the disk-director ratio q =
PT/PD is constant, that is, independent of P .
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director

terminator

cutting
plane

focal disk

(a)

T

P

D

(b)

director

Figure 7.6: (a) Focal disk and director. (b) Disk-director ratio q = PT/PD is constant.

Proof. In Figure 7.7, α denotes the angle formed by a generator and a line
parallel to the axis of the twisted cylinder, and β > 0 denotes the angle between
the cutting plane and a plane through the terminator. Let P1 denote the point
where the generator through P intersects the terminator, and let P0 denote the
vertical projection of P on the plane of the terminator. Then PP0/PP1 =cos α,
and PP0/PD =sin β. But PT = PP1 because both are lengths of tangent segments
to the same sphere from an external point P. Therefore

q =
PT

PD
=

PP1

PD
=

PP1

PP0

PP0

PD
=

sin β

cos α
, (7.1)

which is a constant independent of P . The case of a flipped hyperbola is shown in
Figure 7.7b.

P
0

T

P

D

α

β

P1

generator

director

(a) (b)

director generator

P

P
D 0 P1

α

β

focal
disk

flipped hyperbola

T

Figure 7.7: Proof of Proposition 1: (a) ellipse; (b) flipped hyperbola.

If β = 0 the cross section is a circle, and the definition of director D as a line of
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intersection does not apply. But in this case we can regard D as a line at infinity
and the ratio q = PT/PD as being zero. In most results involving the disk-director
ratio we assume q > 0 and assume that the conic is noncircular without explicitly
saying so.

Invariant properties of q.

From (7.1) we see that the disk-director ratio q depends only on β, the angle of
inclination of the cutting plane, and on α, the angle between a generator of the
twisted cylinder and its vertical axis. Therefore q is invariant under any change
in configuration that preserves the angles, such as moving the inscribed sphere
upward or downward, translating the cutting plane, or scaling by similarity. When
the twisted cylinder is a cone with vertex angle 2α, (7.1) is a known formula for
the eccentricity of the conic section. By moving the inscribed sphere through the
cutting plane to produce families of focal disks, we obtain:

Proposition 2. A conic of intersection has the focal disk-director property with
respect to infinitely many focal disk-director pairs, all of which have the same disk-
director ratio.

7.3 DISK-DIRECTOR RATIO RELATED TO ECCENTRICITY

The classical focus-directrix property (Figure 7.8b) does not apply to circular conic
sections, and likewise the generalized focal disk-director property does not apply
to circular sections of a twisted cylinder. For a nonhorizontal cutting plane, the
focal disk-director property in this plane is illustrated in Figure 7.8a for normal
configurations. It states that there is a constant q such that PT = q PD for every
P on the conic. In normal cases, when the focal disk can shrink to a point (denoted
by F in Figure 7.8b), the director becomes the classical directrix of a conic with
focus F . The ratio q = PT/PD, which is unchanged in the shrinking process,
turns into the classical eccentricity e = PF/PD for a noncircular conic section. To
preserve the relation q = e for all conics we take q = 0 for a circle. Therefore:

T

P
D
director

focal

P
D
directrix

focus F
T

P
D
director

(a) (b) (c)

disk
focal
disk

Figure 7.8: Focal disk-director property: PT = q PD (a) normal configuration; (c) ab-
normal configuration. (b) Classical focus-directrix property : PF = e PD.
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For normal configurations, the disk-director ratio is equal to the eccentricity of
the conic.

In an abnormal case shown in Figure 7.5c and in Figure 7.8c, the disk cannot
be shrunk to a focus, and the foregoing argument does not apply. The transition
from normal to abnormal occurs when the hyperbola c.1 in Figure 7.3c degenerates
and then flips to the hyperbola c.3 which, as we will see in a moment, has similar
asymptotes but not necessarily the same eccentricity. During the transition, q
remains invariant and is equal to the eccentricity e of the hyperbola in c.1.

To determine the relation between q and the eccentricity ε of the flipped hyper-
bola with the same asymptotes it suffices to relate e and ε. We do this with the
help of Figure 7.9.

γ

Figure 7.9: The hyperbola with horizontal focal axis has eccentricity e =1/cos γ. The
flipped hyperbola with same asymptotes has conjugate eccentricity ε =1/sin γ.

Conjugate eccentricities of flipped hyperbolas with the same asymptotes.

In Figure 7.9, γ denotes the angle between an asymptote of a hyperbola of ec-
centricity e and its horizontal focal axis. It is easy to show that e = 1/ cos γ.
(See Figure 13.14 in [1].) Hence q = 1/ cos γ, so the angle between asymptotes
is also invariant under translation of the cutting plane. But the eccentricity ε of
the flipped hyperbola (dashed in Figure 7.9) with the same asymptotes is given by
ε = 1/ cos(π/2− γ) = 1/ sin γ. Because cos2 γ + sin2 γ = 1 we find

1

e2
+

1

ε2
= 1, or e =

ε√
ε2 − 1

.

We call e and ε conjugate eccentricities. They are equal only for a rectangular
hyperbola, in which case the asymptotes are perpendicular and e = ε =

√
2.

Relation between the disk-director ratio and eccentricity.

We know that q = e for the configurations in Figures 7.5a and 7.5c, where e is the
eccentricity of the hyperbola in Figure 7.5a. Consequently, for the flipped hyperbola

ApostolGeoChapter 7_v2.indd   9ApostolGeoChapter 7_v2.indd   9 10/1/12   11:00 AM10/1/12   11:00 AM



222 Chapter 7. NEW DESCRIPTIONS OF CONICS

in Figure 7.5c, q is related to its eccentricity ε by

q =
ε√

ε2 − 1
.

Thus, we have established:

Proposition 3. For normal configurations, the disk-director ratio is the eccentricity
of the conic, and for abnormal configurations it is the conjugate eccentricity.

7.4 FOCAL DISK-DIRECTOR THEOREM AND ITS CONVERSE

Because every conic, including a flipped hyperbola, can be obtained as a section of
a twisted cylinder, the foregoing results can be summarized as follows:

Theorem 7.1. For a conic with eccentricity e, there is an infinite family of focal
disk-director pairs, all with disk-director ratio equal to e. For a hyperbola there is
a second infinite family of focal disk-director pairs, all with disk-director ratio equal
to its conjugate eccentricity ε.

The following converse to Theorem 7.1 shows that conics are the only curves
having the focal disk-director property.

Theorem 7.2. (a) Given a disk, a coplanar line L, and a positive number q, the
locus of all points P in the plane of the disk such that the length of the tangent
segment from P to the disk is q times the distance from P to L is a noncircular
conic. The disk is a focal disk with director L, and q is the disk-director ratio.

(b) The conic in (a) has eccentricity e = q, except when L intersects the focal
disk and q > r/

√
r2 − λ2, where r is the radius of the disk, and |λ| < r is the

distance from the disk’s center to L, in which case e = q/
√
q2 − 1.

Proof of (a). In Figure 7.10, choose the origin of xy coordinates at the center of
the disk of radius r, and take L parallel to the y axis with equation x = λ, where
|λ| ≥ 0 is the distance from the disk’s center to L. The length t of the tangent
segment to the disk from point (x, y) on the locus satisfies the defining property

t = q |x− λ|, (7.2)

which, together with x2 + y2 = t2 + r2, gives x2 + y2 − r2 = q2(x2 − 2λx + λ2) or

(1− q2)x2 + y2 + 2λq2x = r2 + q2λ2. (7.3)

This represents a conic. The disk and L constitute a focal disk-director pair
with disk-director ratio q. When q = 0, (7.3) represents a circle of radius r.

Proof of (b). q = 1. In this case, (7.3) represents a parabola (or degenerate
case) given by

y2 = −2λx + r2 + λ2. (7.4)

When λ = 0, the parabola degenerates to the pair of horizontal lines y2 = r2,
tangent to the focal disk as in Figure 7.4c, with the director passing through the
center of the disk. If λ �= 0, (7.4) gives a nondegenerate parabola with e = q = 1.
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x = λ
|x − λ|(x,y)

t = q |x − λ| 

r

 disk

L

(0,0)
x

y

Figure 7.10: Diagram for the proof of Theorem 7.2(a).

q �= 1. By completing the squares in (7.3) we find the equation

(x− ρ)2 +
y2

1− q2
=

B

1− q2
, (7.5)

which represents a central conic, with

ρ = − λq2

1− q2
, and B = r2 − λρ. (7.6)

When B = 0, (7.5) becomes y2 = (q2 − 1)(x − ρ)2, which implies q > 1 and
represents a degenerate case of a hyperbola consisting of two lines intersecting at
(ρ, 0) with slopes ±

√
q2 − 1.

Now assume B �= 0, so the central conic is a nondegenerate ellipse or hyperbola.
From (7.5) we see that its center is at (ρ, 0) which, by (7.6), is independent of r. To
determine the eccentricity, first we find lengths a and b of the semiaxes as follows.

0 < q < 1. In this caseB > 0 and (7.5) can be written as (x−ρ)2/a2+y2/b2 = 1,
which represents a noncircular ellipse with

a2 =
B

1− q2
, and b2 = (1− q2)a2. (7.7)

This gives q =
√

1− b2/a2, which is also the eccentricity, hence e = q.

q > 1. In this case (7.5) represents a hyperbola given by

(x− ρ)2 − y2

q2 − 1
=

−B
q2 − 1

. (7.8)

There are two types of hyperbolas, depending on whether B < 0 (horizontal focal
axis) or B > 0 (vertical focal axis).
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B < 0. In this case −B = b2 for some b > 0 and (7.8) can be written in the
form (x− ρ)2/a2 − y2/b2 = 1, where a2 = b2/(q2 − 1). This hyperbola has its foci
on the x axis and eccentricity e =

√
1 + b2/a2 = q.

B > 0. In this case we write B = b2 for some b > 0 and (7.8) takes the form
y2/b2 − (x − ρ)2/a2 = 1, where a2 = b2/(q2 − 1). The foci of this hyperbola are
not on the x axis but on the vertical line x = ρ. The director x = λ is also vertical.
This is the flipped hyperbola in the abnormal case. The eccentricity of the flipped
hyperbola is e =

√
1 + a2/b2 = q/

√
q2 − 1. This cannot occur when r = 0, which

is the classical case, so B > 0 requires r > 0.

Examples for various q are shown in Figure 7.11. It is easy to verify that the
case with B > 0 occurs when λ2 < r2 and q > r/

√
r2 − λ2 = 1/ cos γ0, where γ0

is the asymptote angle in Figure 7.11b. Earlier we mentioned that the degenerate

(a) (b)

γ
0

Figure 7.11: Examples of the conic for various values of q. The director intersects the
disk in (b) but not in (a).

configuration in Figure 7.4c can be regarded as a limiting case of the abnormal
configuration in Figure 7.5c. In terms of eccentricity, this may seem paradoxical
because Figure 7.4c is a limit of parabolic configurations, with all parabolas having
eccentricity e = 1, but as the configuration in Figure 7.5c approaches that in Figure
4c, the eccentricities of the hyperbolas tend to ∞. However, there is no paradox in
terms of the disk-director ratio q because during this limit process q → 1, which
matches the value of q in Figure 7.4c.

PART 2: BIFOCAL DISK DESCRIPTION OF CONICS

7.5 BIFOCAL DISK PROPERTY

Return to the twisted cylinder cut by an inclined plane (Figure 7.2), and inscribe
in it two spheres as in Figure 7.12, each of which pierces a focal disk in the plane
of the conic. We will prove the following bifocal disk property.

Proposition 4. There is a constant c such that for each point P on the conic of
intersection, either the sum or absolute difference of the tangent lengths from P to
the two focal disks is equal to c.
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Proof. In Figure 7.12, ellipses are shown, but the argument applies to all conics,
including circular cross sections.

P

P

P

P2

1

T1

T2

terminators

(a) (b)

P1

P2

T1

T2

Figure 7.12: Bifocal disk property:(a) PT1 + PT2 = c. (b) PT1 − PT2 = c.

A generator of the twisted cylinder passing through a point P on the conic
intersects the terminator of sphere 1 at P1 and that of sphere 2 at P2. The tangent
segment PT1 from P to disk 1 has the same length as the tangent segment PP1

because both are tangent to sphere 1. Similarly, PP2 = PT2 for sphere 2. Therefore,
if P is between the upper and lower terminators as in Figure 7.12a, we have the
sum

PT2 + PT1 = PP2 + PP1 = P2P1 = c,

where c = P2P1 is the constant distance between the terminators measured along
the generator on the twisted cylinder. But if P lies below the lower terminator so
that PT2 < PT1 as in Figure 7.12b, the same argument shows that the difference

PT1 − PT2 = PP1 − PP2 = P2P1 = c,

where c is the same constant distance above. Therefore, the sum or absolute dif-
ference of the tangent lengths (larger minus smaller) from a point on the conic of
intersection to the two focal disks is constant.

Possible configurations.

Figures 7.13 and 7.14, elaborations of Figure 7.3, show examples of some of the
configurations of conics and two focal disks (shown shaded) that can occur. The
directors are also shown as intersections of the cutting plane and the two terminator
planes.

In Figure 7.13c the cutting plane has been translated to produce a degenerate
parabola (two parallel lines). In Section 7.13 we show that this degenerate parabola
leads to a surprising property of hyperbolas! Figure 7.14 relates focal disks to the
hyperbolic cross sections shown in Figure 7.3c. An abnormal case is depicted in
Figure 7.14c. Unlike the normal cases in Figures 7.13a, 7.13b, and 7.14a, the disks
in Figure 7.14c cannot be shrunk to become foci.
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(a) (b) (c)

Figure 7.13: (a) Ellipse. (b) Parabola. (c) Degenerate parabola obtained by translating
the cutting plane in (b). This degenerate conic cannot be obtained as a section of a cone.

(a) (b) (c)

Figure 7.14: (a) Hyperbola. Translating the cutting plane in (a) produces a degenerate
hyperbola (b). Further translation leads to the abnormal configuration in (c).

By moving the inscribed spheres independently, we obtain:

Proposition 5. Every conic of intersection has the bifocal disk property with respect
to infinitely many pairs of focal disks.

Geometric relations on a twisted cylinder.

Figure 7.15 relates geometric parameters of the inscribed spheres, terminators, focal
disks, and directors with the angles α and β introduced in Figure 7.7. Figure 7.15a
shows that

c = s cosα, (7.9)

where s is the distance between the centers of the inscribed spheres, and c is the
length of the portion of the generator joining the terminators. Figure 7.15b gives

h = c cosα, (7.10)
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where h is the distance between the terminator planes. In Figure 7.15c,

d = s sinβ, (7.11)

where d is the distance between centers of the focal disks. Note that d = 0 when β =
0, which means the focal disks are concentric when the cutting plane is horizontal.
For β > 0 Figure 7.15d yields

h = D sinβ, (7.12)

where D is the distance between the parallel directors of the focal disks.

c = s cos α h = c cos α d = s sin β h = D sin β

s c

α

c

generator generator

h

β
d

s D

β

h

(a) (b) (c) (d)

α

Figure 7.15: Relating parameters c, s, h, d,D with angles α and β.

Dividing (7.11) by (7.9) and using (7.1) we find

d

c
=

sinβ

cosα
= q. (7.13)

Because q is related to the eccentricity of a noncircular conic as described in Propo-
sition 3, (7.13) shows that the ratio d/c bears the same relation to eccentricity in
the focal disk-director property.

Proposition 6. If d > 0, the ratio d/c of the distance d between centers of the
focal disks and the constant sum or absolute difference c of tangent lengths is equal
to the disk-director ratio q of the configuration.

Equating (7.10) and (7.12) and using(7.13) we also deduce

D =
d

q2
, (7.14)

which relates the distance D between directors to the distance d between centers of
the focal disks.

Possible pairs of focal disks.

Consider a fixed ellipse and its family of focal disks in Figure 7.4a. Any two disks
in this family can serve as a pair of focal disks. If the ellipse has eccentricty e,
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major axis of length 2a, and distance 2f between foci, there are infinitely many
pairs of positive constants c and d with ratio d/c = e (because q = e) subject to
the constraints c ≤ 2a and d ≤ 2f , the same restrictions imposed by the inscribed
spheres in Figure 7.12. If one permissible value of c or d is chosen, the other is
determined by the relation d/c = e, and each such pair corresponds to a pair of
focal disks. In Figure 7.4a, the solid line joining the foci is the locus of centers of
the focal disks.

For a parabola (q = e = 1) there are infinitely many choices of positive constants
c and d with c = d (with no constraints), hence infinitely many pairs of focal disks
(overlapping as well as nonoverlapping) with centers at a distance d apart and with
a constant sum or absolute difference c of tangent lengths. Examples are shown in
Figure 7.4b.

Figure 7.5 shows that there is more than one way for pairs of focal disks to relate
to a hyperbola. For normal configurations as in Figure 7.5a, with q = e = d/c, one
disk can be chosen inside each branch, or both disks can be chosen inside the same
branch to form a pair of focal disks. Disks inside the same branch have no further
constraints on c or d, but disks inside different branches require d > 2f , c > 2a. For
abnormal configurations as in Figure 7.5c, any two disks tangent to both branches
of the hyperbola can be chosen as a pair of focal disks with no constraints on c or
d except d/c = q, where now q = ε, the conjugate eccentricity of the hyperbola.

Tandem motion.

Relations (7.9)-(7.14) reveal interesting phenomena not otherwise immediately ap-
parent. The inscribed spheres in Figure 7.15 can be moved in tandem, that is, with
fixed distance s between their centers. Their radii will change. The pierced disks in
the cutting plane will also move and, by (7.11), the distance d between their centers
remains fixed, so the disks also move in tandem in the plane of the conic, and their
radii will also change. The radii of the terminators will also change but, because α
is constant, the length c of the generator joining the terminators, and the distance
h between planes of the terminators do not change (by (7.9) and (7.10)). Because
c does not change, the bifocal disk property holds with the same value of c during
the entire tandem motion. By (7.12), the distance D between directors does not
change.

7.6 BIFOCAL DISK THEOREM AND ITS CONVERSE

Every conic, including a flipped hyperbola, can be obtained as a section of a twisted
cylinder. In view of the foregoing remarks we have the following bifocal disk theo-
rem:

Theorem 7.3. For every conic and each permissible value c of constant sum or
absolute difference of tangent lengths, there is an infinite family of pairs of focal
disks satisfying the bifocal disk property for c.

We remind the reader that for abnormal hyperbolic configurations, the family
of focal disks in Figure 7.5c is not realizable on a cone.
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The following converse of Theorem 7.3 extends the classical bifocal property of
central conics [1, p. 498] to all conics, including the parabola. It also tells us that
conics are the only curves having the bifocal disk property. Therefore this property
characterizes the conics.

Theorem 7.4. Suppose we are given two coplanar disks with distance d > 0 between
their centers. The locus of all points in the plane such that either the sum or the
absolute difference of the lengths of the tangent segments from this point to the
two disks is a positive constant c is a conic. Each disk is also a focal disk with a
director having disk-director ratio q = d/c, regardless of the radii of the disks. The
eccentricity of the conic is related to q as described in Theorem 7.2b.

Before presenting the proof, we note that the locus problem described in Theo-
rem 7.4 involves four parameters (the two radii of the disks, the distance d between
their centers, and the constant c). Nevertheless, our proof will reduce this to the
locus problem of Theorem 7.2, which involves only three parameters: the radius of
one disk, the distance to its director, and the disk-director ratio.

Proof. Place the center of one disk of radius r1 at the origin and the center of
the other disk of radius r2 at (d, 0), where d > 0.

Denote the lengths of the tangent segments from a point (x, y) on the locus by
t1 and t2, as in Figure 7.16. Then (x, y) is on the locus if and only if either t1 + t2

(0,0)

r
x

(x,y)

1 r2

t1
t
2h

1 h
2

y

y

(d,0)

Figure 7.16: Diagram for the proof of Theorem 7.4.

or t1 − t2 is either c or −c. This holds if and only if either

(c− (t1 + t2))(c− (t1 − t2)) = 0

or
(c+ (t1 + t2))(c+ (t1 − t2)) = 0.

This is equivalent to
c2 ± 2ct1 + (t21 − t22) = 0. (7.15)
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Right triangles with legs t1 and t2 reveal that t21 = h2
1 − r21 and t22 = h2

2 − r22, so

t21 − t22 = h2
1 − h2

2 + r22 − r21. (7.16)

But h1 and h2 are also hypotenuses of right triangles with altitude y, so

h2
1 = x2 + y2, h2

2 = (x− d)2 + y2,

giving h2
1 − h2

2 = 2dx− d2, which transforms (7.16) into

t21 − t22 = 2dx− d2 + r22 − r21.

Use this in (7.15) and solve for t1 to obtain

t1 = ±(d
c
x+

k

2c
),

where
k = c2 − d2 + r22 − r21. (7.17)

But t1 ≥ 0, so

t1 =
d

c
|x− λ1|, (7.18)

where

λ1 = − k

2d
. (7.19)

At this stage the locus problem has been reduced to that in Theorem 7.2a.
Comparing (7.18) with the defining property (7.2) and applying Theorem 7.2a we
see that the locus is a conic. The disk of radius r1 is also a focal disk having the line
x = λ1 as its inherited director and with disk-director ratio q = d/c. The cartesian
equation of the conic is given by (7.3) with λ = λ1 and r = r1. The eccentricity of
the conic is described in terms of q by Theorem 7.2b.

By an argument similar to that leading to (7.18), it is easy to verify that the disk
of radius r2 is also a focal disk for exactly the same conic, with its own inherited
director x = λ2 and the same disk-director ratio q = d/c, where

λ2 = λ1 +
d

q2
. (7.20)

Moreover, (7.20) shows that the directors are parallel and the distance between
them is d/q2, in agreement with (7.14). The directors are always orthogonal to the
line through the centers of the disks. Examples illustrating this theorem are given
in Section 7.10.

Theorem 7.4 assumes d > 0 and does not cover the case of concentric focal disks.
But in this case it is easy to verify directly that the locus in question is a concentric
circle containing the disks. In fact, each of the tangent distances t1 and t2 from
that circle to the focal disks is constant, so the sum of tangent distances is equal
to the constant t1 + t2 and the absolute difference is the constant |t1 − t2|. Also,
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Theorem 7.4 does not cover the case c = 0 (equal tangent lengths), which is easily
analyzed directly and is illustrated in the last diagram in Figure 7.22.

The solution of the four-parameter problem in Theorem 7.4 leads to the same
set of conics as does the solution of the three-parameter problem in Theorem 7.2.
This means that as we vary the four parameters in Theorem 7.4 we obtain conics
from the same set with repetitions. This is consistent with the converse result in
Theorem 7.3, which provides an infinite family of pairs of focal disks for a given
conic.

7.7 TWO NEW CHARACTERIZATIONS OF THE CONICS

The results obtained in Theorems 7.1 through 7.4 can be summarized into one
theorem that provides the two new characterizations of the conics mentioned in
Section 7.1.

Theorem 7.5. The focal disk-director property is satisfied by all conics, and only
by the conics. The bifocal disk property is satisfied by all the conics, and only by
the conics.

A central conic has two foci and two directrices, but a parabola has one focus and
one directrix. By contrast, we have shown that every conic, including the parabola,
has infinitely many pairs of focal disks, and every conic has infinitely many focal
disk-director pairs.

PART 3: SUPPLEMENTARY RESULTS

7.8 MORE ON DIRECTORS AND THE BIFOCAL DISK PROPERTY

If a director intersects the boundary of the focal disk at P , then in Figures 7.8a and
7.8c, PT = q PD = 0 trivially, so P is on the conic. These intersections separate
the conic into complementary portions, on one of which the sum of tangent lengths
is constant, while on the other the absolute difference of tangent lengths is the same
constant. Next we show how the directors identify the complementary portions.

Proposition 7. Suppose we are given a conic having two focal disks with distance
d > 0 between their centers. Let q be the disk-director ratio for each disk-director
pair. Then on the portion of the conic between directors the sum of tangent lengths
to the disks has the constant value c = d/q, and on the remaining portions the
absolute difference of tangent lengths is the same constant.

Proof. If P is on the conic with tangents to the focal disks of lengths t1 and t2,
the distances from P to the corresponding directors are t1/q and t2/q. By (7.14),
the distance between directors is d/q2. Therefore, if P lies between the directors,
then t1/q + t2/q = d/q2, so t1 + t2 = d/q = c. Otherwise, |t1/q − t2/q| = d/q2, in
which case |t1 − t2| = d/q = c.
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232 Chapter 7. NEW DESCRIPTIONS OF CONICS

Special cases of Proposition 7.

The classical bifocal properties of central conics are special cases of Proposition 7
for normal configurations. To see why, keep d fixed and let the focal disks shrink to
the foci F1 and F2, so the directors become directrices. Every point P on an ellipse
lies between its two directrices, so by Proposition 7 the sum PF1+PF2 is constant.
Points on a hyperbola cannot lie between the two directrices, and Proposition 7 tells
us that the absolute difference |PF1 − PF2| is constant on the entire hyperbola.

What happens if both disks are very near to one focus? Figure 7.17 shows exam-
ples with one focal disk inside another. In Figure 7.17b, one of the disks is itself a
focus. In these examples no portion of the conic is between the directors, revealing
the surprising fact that the difference of tangent lengths can be constant everywhere
on an ellipse and also on a parabola. This resembles the classical bifocal property
of a hyperbola.

(a) (b) (c)

Figure 7.17: The difference of tangent lengths is constant everywhere on the ellipse in (a)
and (b), and also everywhere on the parabola in (c).

7.9 LOCATING A FOCAL DISK AND ITS DIRECTOR FOR A CONIC

Next we address the following problem related to the families of focal disks in
Theorems 7.1 and 7.3:

For a noncircular conic, determine the center and radius of a possible focal disk.

We solve this problem using formulas in the proof of Theorem 7.2b to obtain, for
each type of conic, a relation between the radius r and center of a focal disk. The
central conics (eccentricity e �= 1) are treated separately from the parabola (e = 1).
In both cases we take the x axis as an axis of symmetry passing through the foci.

Central conic.

According to the proof of Theorem 7.3b, the center of a nondegenerate central conic
is at (ρ, 0) where ρ is related to λ by (7.6), which gives λ = ρ−ρ/q2, and the length
a of the semimajor axis is given by (7.7), which implies

a2 =
r2

1− q2
+

ρ2

q2
.
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7.9. LOCATING FOCAL DISK AND DIRECTOR 233

The parameter ρ is positive or negative, and |ρ| represents the distance between
the center of the focal disk and the center of the conic. Therefore, if the central
conic is translated horizontally so its center is at the origin and the focal disk is at
the point (−ρ, 0), then the director is translated to the line x = λ − ρ = −ρ/q2,
with the focal disk and director on the same side of the origin. The formula for a2

remains unchanged because ρ2 and r2 are unchanged.
For a given a and disk-director ratio q �= 1, introduce f = aq, the distance from

the center of the conic to a focus, and rewrite the foregoing formula for a2 in the
form

ρ2

f2
+

r2

a2(1− q2)
= 1. (7.21)

Now we take a central conic with center at the origin and semiaxes a and b, where
b2 = a2|1− q2|, and determine a possible focal disk-director pair for it. Because the
directrix is the line x = −ρ/q2, we wish to determine all pairs ρ and r satisfying
(7.21). For an ellipse, q < 1, b2 = a2(1− q2) and (7.21) becomes

ρ2

f2
+

r2

b2
= 1, (7.22)

which implies |ρ| ≤ f and r ≤ b.
For a hyperbola of Type 1, (B < 0 in (7.8)) we have q > 1, b2 = a2(q2 − 1), and

(7.21) takes the form
ρ2

f2
− r2

b2
= 1, (7.23)

which implies |ρ| ≥ f .
A hyperbola of Type 2 (given by (7.8) with B > 0), when translated horizon-

tally by −ρ, has its vertices at (0,±b) on a vertical axis through the center of the
hyperbola where b > 0 and b2 is given by (7.17). The foci of the hyperbola are also
on the vertical line, but its focal disks have their centers on the x axis. In this case
(7.21) relates the parameters ρ and r by the equation

r2

b2
− ρ2

f2
= 1, (7.24)

where now r ≥ b.

Parabola.

In this case the relation between ρ and r is obtained differently. For the parabola
in (7.4) the vertex is at (ρ, 0), λ = −2f , and ρ + f = r2/(2λ) = −r2/(4f), so
r2 = −4f(ρ+ f). This can be written as

r2 = 4f(−ρ− f), (7.25)

and it implies |ρ| ≥ f. In the ρr plane, (7.25) represents a parabola with its vertex at
(f, 0), where f is the distance from vertex to focus. In this case, the corresponding
director is x = ρ− 2f .

The results of this section can be summarized as follows.
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234 Chapter 7. NEW DESCRIPTIONS OF CONICS

Theorem 7.6. (a) For a central conic with center at the origin and with disk-
director ratio q, a focal disk with center at (ρ, 0) has radius given by (7.22)-(7.24),
and its director is along the line x = δ, where

δ =
ρ

q2
. (7.26)

(b) For a parabola that opens to the right, with vertex at the origin and focus at
(f, 0), a focal disk with center at (ρ, 0) has radius given by (7.25), and its director
is the line x = δ, where

δ = ρ− 2f. (7.27)

Geometric construction of focal disk.

In the ρr plane, (7.21) represents a central conic of the same type as the given conic
with its center at the origin. This auxiliary conic is a horizontal dilation by the
factor q of the conic with semiaxes a and b. Now we show that the auxiliary conic
can be used to construct every focal disk of the central conic geometrically.

r

(a) (b)

auxiliary
ellipse

auxiliary
parabola

r

Figure 7.18: Auxiliary (dashed) conic used to construct a focal disk, for (a) an ellipse,
and (b) a parabola.

The construction is illustrated in Figure 7.18a for an ellipse, where the auxiliary
ellipse given by (7.22) (shown dashed) has its vertices at the foci of an ellipse with
semiaxes a and b. The auxiliary ellipse is a horizontal dilation by the factor q. A
point (ρ, r) on the auxiliary ellipse satisfying (7.22) lies directly above the center of
the focal disk for the given ellipse, and its ordinate r is the radius of the disk. We
obtain all focal disks for the ellipse by allowing ρ to vary from −f to f . The same
method produces the focal disks of a hyperbola with semiaxes a and b. Horizontal
dilation by the factor e produces the hyperbolas in (7.23) and (7.24), which can be
used in a similar way to construct the focal disks of the hyperbola. In Figure 7.18b
the dashed auxiliary parabola described by (7.25) is obtained by translating the
parabola in (7.4) so the translated vertex matches the focus of the given parabola.

How do we locate the director for a given focal disk?

This is answered by (7.20) which can be interpreted as the following:

Shifting principle. If one focal disk of a family is shifted through a distance d
to another, its director will be shifted in the same direction by the distance d/q2.
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In the abnormal case in Figure 7.5c we can start with the smallest disk whose
director passes through its center, and shift it by the distance d to another disk
of the family. The director is then shifted in the same direction by d/q2. For the
families in Figures 7.4a, 7.4b, and 7.5a, we can start with a focus as one focal disk,
and shift it by d to another disk of the family. The directrix for that focus is then
shifted by the distance d/q2 to locate the director of the other disk.

7.10 EXAMPLES OF CONICS WITH FIXED FOCAL DISKS

This section fixes the focal disks and provides a series of snapshots showing what
happens qualitatively to the conics as c varies. In Figures 7.19-7.22 we take r1 =
2, r2 = 1, d = 6 and let c decrease from c = 10 to c = 0. The arrows indicate the
positions of the directors. Between directors the sum of tangent lengths to the disks
is constant, as indicated by the solid curves. On the remaining portion of the conic

10 7.94 6.71 6.2 

Figure 7.19: Ellipses become more elongated as c decreases from 10 toward 6.

5.926.00 5.918

Figure 7.20: Conic becomes a parabola when c = 6, and a hyperbola when c < 6.

the absolute difference of tangent lengths is constant, as indicated by the dashed
curves. If c is large, the ratio d/c is close to zero, and the conic resembles a circle
of radius c/2. As c decreases, the ratio d/c increases and the ellipse becomes more
and more elongated (Figure 7.19). When c = d, the ellipse suddenly changes to
a parabola, and then to a hyperbola as c continues to decrease to 0, as shown in
Figures 7.20 through 7.22.

When one disk is a point (a focus), the two extreme degenerate cases in Figure
7.21 coincide, and the abnormal configurations between them disappear. In this
case, all possible configurations can be realized as sections of a cone, and the twisted
cylinder is not needed. It is important to note that in this sequence of snapshots the
disk-director ratio q increases monotonically, but the eccentricity e is not monotonic.
The eccentricity jumps up when the hyperbola flips in Figure 7.21, and then jumps
down when the hyperbola flips back in Figure 7.22. This is consistent with the fact
that e = q in normal cases, and e = q/

√
q2 − 1 in abnormal cases.
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5.916 5.8 5.3 5.196

Figure 7.21: The hyperbola degenerates to a pair of lines when c =
√

d2 − (r1 − r2)2. As
c decreases further the hyperbola flips and opens up and down instead of right and left,
until the next degeneration occurs at c =

√
d2 − (r1 + r2)2. This interval for c represents

abnormal configurations not realizable on a cone, but requiring a twisted cylinder.

5.0 4.58 3.87 2.0 0.0

Figure 7.22: For c <
√

d2 − (r1 + r2)2 the hyperbola flips back with each branch tangent

to one of the disks, until c <
√

(d− r1)2 − r22 , when both disks detach. As c approaches
0, both branches tend to one vertical line, on which the lengths of the tangents to the two
disks are equal: t1 = t2.

7.11 APPLICATIONS OF THE BIFOCAL DISK PROPERTY TO
TRACING CONICS

Known string mechanisms for tracing conics, based on their classical focal proper-
ties, require separate devices for the ellipse, hyperbola, and parabola, as shown in
Figure 7.23. The bifocal disk property allows us to design two single mechanisms,
each of which traces all three types.

spool
ring

rod

ring

pencil

(a) (b) (c) 

ring

Figure 7.23: Known mechanisms for tracing (a) ellipse, (b) hyperbola, (c) parabola.

Figure 7.24a (insert) shows a plus-shaped receptacle that accommodates two
perpendicular rigid rods, one for the radius of the disk, the other for the tangent line
to the disk. A thumb screw allows the radius to be changed. Two such receptacles
are needed, one for each focal disk. The two tangent rods pass through a small ring
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string
radial rod

tangent rod

(a) (b)

Figure 7.24: Two new mechanisms, each based on the bifocal disk property, for tracing
portions of all three conics. In (a) the sum of tangent lengths is constant, while in (b) the
difference of tangent lengths is constant.

at their intersection. A string passing through the ring connects one receptacle to
the other, as in Figure 7.24a. The string has constant length, so a pencil through
the ring will trace out that part of the conic on which the sum of the tangent lengths
is the constant length. By changing only the length of the string we can achieve
any eccentricity to obtain portions of all three types of conics. Thus, with the single
mechanism in Figure 7.24a we can trace all the solid portions of the conics shown in
Section 7.5. Larger solid portions can be traced by changing the radii of the focal
disks and the distance between their centers.

Figure 7.24b shows another single mechanism that exploits the bifocal disk prop-
erty that the difference of tangent lengths can be constant everywhere on the conic.
Two strings attached to the receptacles pass through the ring and together wind
around a spool attached to the pencil. This traces out the dashed portions of the
conics shown in Section 7.5, and, what is more impressive, it also traces the complete
conic of any eccentricity. In this case we can achieve any eccentricity by changing
the length of one string between the disk and the ring. Examples for an ellipse and
parabola are shown in Figure 7.23.

7.12 FOCAL DISKS AND DIRECTORS FOR THE ELLIPSE AS A
SECTION OF A CIRCULAR CYLINDER

Every ellipse is a cross section of a right circular cylinder cut by an inclined plane, as
illustrated in Figure 7.25a. Because a circular cylinder is a special case of a twisted
cylinder, focal disks and directors for an ellipse also occur naturally in such cross
sections. The analysis on a circular cylinder is somewhat simpler and is presented
here primarily because this special case led to our discovery of the bifocal disk
property for all conics.

Two spheres inscribed in the cylinder touch the cylinder along parallel equators.
In Figure 7.25a, the spheres pierce the cutting plane along two circular disks. In
Figure 7.25b, each disk has radius 0 and the spheres are tangent to the cutting plane
at F1 and F2, the foci of the ellipse. In this case the diagram in Figure 7.25c reduces
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to the classical bifocal property for an ellipse: the sum PF1 + PF2 is constant.

F F2 1

F1

F2
P

directrix

director L

director L
directrix PT  + PT   is constant1 2

D1

T2

T1

T2

T1

β
P1

P2

P

P

(a) (b) (c)

2

1

Figure 7.25: (a) Cutting plane cuts focal disks from inscribed spheres. (b) Cutting plane
tangent to the inscribed spheres. (c) The sum of tangent lengths to focal disks is constant.

First we show that the disks satisfy the bifocal disk property in Figure 7.25c,
and then we show that they are focal disks whose directors are the parallel lines of
intersection L1 and L2 of the equatorial planes with the cutting plane.

To verify the bifocal disk property, refer to Figure 7.25a, and let P be a point
on the ellipse. A vertical line on the cylinder through P intersects the equators of
the inscribed spheres at P1 and P2, with PP1 tangent to the upper sphere and PP2

tangent to the lower sphere. Let PT1 and PT2 denote the lengths of the tangent
segments from P to the upper and lower disks, respectively.

The two tangent segments from P to a disk and to the corresponding equator
have equal lengths, hence PT1 = PP1 and PT2 = PP2. But the two vertical tan-
gents from the ellipse to the equators have lengths of sum PP1+PP2 = P1P2, which
is the distance between the parallel equators. This sum is a constant (independent
of P ) because of the rotational symmetry of the cylinder, so the sum of the tangent
segments to the disks is the same constant:

PT1 + PT2 = P1P2.

Moreover, this relation holds if we move the spheres relative to the cutting
plane, provided neither equator touches the ellipse. In other words, if neither sphere
touches the ellipse, as in Figure 7.25, the sum of the lengths of the tangents from
the ellipse to the two focal disks is constant. When a sphere touches the ellipse,
a dramatic change occurs, as revealed below. Before analyzing this case, we show
that the two disks are, in fact, focal disks with directors L1 and L2.

In Figure 7.25a, let PD1 denote the distance from P to the line of intersection
L1 of the cutting plane and the upper equatorial plane. Then the disk-director ratio
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q = PT1/PD1 = PP1/PD1 = sin β, where β is the angle the cutting plane makes
with the horizontal plane. Because this angle is constant (independent of P ) the
ratio PT1/PD1 is constant on the entire ellipse. This proves that L1 is the director
associated with focal disk 1 and with disk-director ratio q = sin β, which is constant
on the ellipse. When disk 1 shrinks to F1, the director L1 is the classical directrix
associated with F1, and with eccentricity e = sinβ.

Similarly, L2 is the director for disk 2 and it becomes the classical directrix
for focus F2 when disk 2 shrinks to F2. Because q = sinβ, this shows that the
disk-director ratio for an ellipse is equal to its eccentricity: q = e.

Bifocal disk property.

Figure 7.26 shows changes that occur in the plane of the ellipse in Figure 7.25 as
the upper sphere moves down continuously while the lower sphere is kept fixed. The
upper focal disk starts as the focus F1 and gradually increases in radius, staying
inside the ellipse as in Figure 7.26a, until it reaches a critical position where it
first touches the ellipse at a vertex, as shown in Figure 7.26b. At that point, the
focal disk is tangent to its director, the equator, and the ellipse. As the sphere

(a) (b) (c)

(d) (e) (f)

Figure 7.26: Positions of upper focal disk as upper sphere moves down. The focal disk
lies inside the ellipse as in (a) until it first touches the ellipse as in (b). In (c)-(e), the focal
disk is tangent to the ellipse at two points, and the sum of tangent lengths is constant on
the left part of the ellipse, but the difference of tangent lengths is the same constant on
the right part, indicated by dashed curves. The arrows indicate how the director separates
the two parts. In (f) the disk no longer touches the ellipse, and the difference is constant
on the entire ellipse.

moves further down from this critical position, the focal disk touches the ellipse
at two points but moves to the left, as in Figures 7.26c, 7.26d, and 7.26e, and a
new property is revealed: For those points on the ellipse above the upper sphere’s
equator, indicated by dashed curves in Figures 7.26c-7.26e, the difference of tangent
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lengths is equal to the constant distanceP1P2 between equators, but for those below
that equator, indicated by solid curves, the sum is P1P2. In each case the director
passes through the points of tangency, as indicated by the arrows.

When the sphere moves down even further and is no longer tangent to the ellipse,
the difference of tangent lengths is constant on the entire ellipse, drawn dashed in
Figure 7.26f.

Thus, we have the bifocal disk property:

On the portion of the ellipse between the two directors, the sum of tangent lengths
to the two focal disks is constant, while on the remaining portion of the same ellipse
the absolute difference is the same constant.

Of course, a similar situation prevails if the upper sphere is fixed and the lower
sphere moves upward. We obtain a symmetrically located set of focal disks. In
fact, there is no need to use two spheres, one above and another below the cutting
plane. We can construct all possible focal disks by allowing one sphere to move
freely upward or downward through the cutting plane.

Profile view of the focal disks.

Using one inscribed sphere instead of two makes it easier to visualize how the focal
disks change. We can also keep the inscribed sphere fixed and translate the cutting
plane upward (parallel to itself) to get congruent ellipses. The sloping parallel lines
in Figure 7.27a show five profiles of the cutting plane as it moves up from the point
of tangency (a focus) at the bottom line until it cuts the center of the sphere at the

(a) (b)

1 2

3 4

1
2
3
4

0

Figure 7.27: (a) Profile view showing relative positions of the cutting plane and the
inscribed sphere. Darker segments are profiles of the focal disks in (b).

top line. The darker segments are profiles of the corresponding focal disks, shown
shaded in Figure 7.27b. (The focus itself moves along a vertical line.) The line
through the sphere’s center orthogonal to the cutting plane is the locus (not shown)
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of the centers of the focal disks. The arrows show the locations of the directors in
profile view.

7.13 SURPRISING PROPERTY OF HYPERBOLAS

The degenerate parabola in Figure 7.13c is shown again in Figure 7.28, which pro-
vides a proof without words of the following surprising property of hyperbolas:

For each member of the family of hyperbolas with the same pair of vertices, every
circle tangent to both branches intersects each asymptote along a chord of constant
length, regardless of the location of the circle and the angle between the asymptotes.
This constant length is the distance between vertices.

Figure 7.28: The diagram on the left illustrates the property of hyperbolas, and the
diagram on the right shows why it is true.

NOTES ON CHAPTER 7

To the best of our knowledge, no one previously used cross sections of twisted
cylinders to completely characterize the conic sections. Dandelin [36] used the hy-
perboloid of revolution to give new proofs of the Theorem of Pascal on hexagons
inscribed in conic sections, and of the Theorem of Brianchon on hexagons circum-
scribing conic sections. As preparation he showed that every conic is a cross section
of a hyperboloid cut by a plane, by inscribing spheres whose points of tangency with
the cutting plane represent the foci of the conic, as he had done earlier on a cone
[1, p. 498]. But in his treatment of the hyperboloid (and of the cone) he did not
pierce the inclined plane with the spheres as we have done to produce focal disks
and directors.

Some of our results were anticipated by Salmon [62, p. 241 and p. 263] and
by Ferguson [40]. Although both Salmon and Ferguson briefly outline what we
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have called the focal disk-director property and the bifocal disk property of conics,
their treatments are cursory. Neither shows, as we have, that conics are completely
characterized by the focal disk-director property or the bifocal disk property. In
particular, neither proves that every conic has the bifocal disk property, neither
relates focal disks and directors to twisted cylinders, and neither mentions infinite
families of focal disks such as those described in Theorems 7.1 and 7.3.

Finally, we have pointed out geometric reasons why the twisted cylinder is more
appropriate than the cone for studying conic sections. These are reenforced by
analytic geometry. In Section 7.4 we found a standard cartesian equation (7.3) for
a locus satisfying the focal disk-director property. In some cases, the resulting locus
cannot be realized on a cone. For example, the equation y2 = r2 represents two
parallel lines. Also, flipped hyperbolas cannot appear on the same cone, but they
appear as sections of one twisted cylinder. Thus, the twisted cylinder is a more
natural platform than the cone for investigating conics.

Interactive animation to form various twisted cylinders is available at the web
site

http://www.its.caltech.edu/∼mamikon/TwistCyl.html.

The material in this chapter was originally published in [21], except for Section
7.13, which appeared in [17].
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Chapter 8

ELLIPSE TO HYPERBOLA:
“WITH THIS STRING
I THEE WED”

This problem can be easily solved by the methods developed in this chapter. The reader

may wish to try solving it before reading the chapter.

Figure (a) shows a pool with an elliptical boundary. A pebble dropped into
the pool at its left focus creates an expanding frontal circular wave centered at the
focus. When the wave strikes the boundary a reflected wave is formed that always
intersects the frontal wave at the boundary of the pool. A similar situation occurs
in (b) with a parabolic boundary, and in (c) with a hyperbolic boundary.

(a) (b) (c) 

Determine the shape of the reflected wave in the three cases.

Hint: All three curves, ellipse, parabola, and hyperbola, have a common reflec-
tion property that plays a role in solving this problem. For example, light rays
emanating from one focus are reflected along a line passing through the other focus.
For the parabola, the second focus is taken to be at infinity and the reflected rays
are parallel to the axis of the parabola.
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8

A string mechanism is introduced that traces both elliptic and hyperbolic
arcs having the same foci. This suggests replacing each focus by a focal circle
centered at the focus, a simple step that leads to new characteristic properties
of central conics that also extend to the parabola.

The classical description of an ellipse and hyperbola as the locus of points
whose sum or absolute difference of focal distances is constant is generalized
to a common bifocal property, in which the sum or absolute difference of the
shortest distances to the focal circles is constant. Surprisingly, each of the
sum or difference can be constant on both the ellipse and hyperbola. When
the radius of one focal circle is infinite, the bifocal property becomes a new
property of the parabola.

We also introduce special focal circles, called circular directrices, which

provide equidistant properties for central conics analogous to the classical

focus-directrix property of the parabola. Those familiar with paper-folding

activities for constructing an ellipse or hyperbola using a circle as a guide,

will be pleased to learn that the guiding circle is, in fact, a circular directrix.

Finally, an extended eccentricity property of conics is introduced by replacing

the focus by a fixed circle and the directrix by an arbitrary coplanar line.

8.1 STRING CONSTRUCTION FOR BOTH ELLIPSE AND
HYPERBOLA

The title of this chapter was inspired by our modification of the well-known string
construction for the ellipse. In Figure 8.1a, a piece of string joins two fixed points
(the foci of the ellipse), and the string is kept taut by a moving pencil that traces
the ellipse. The bifocal property of the ellipse states that the sum of distances from
pencil to foci is the constant length of the string.
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(a) (b) (c)

Figure 8.1: (a) String construction for the ellipse. (b) If part of the string is inside a tube
of fixed length, the pencil traces a confocal hyperbolic arc. (c) If the length of the tube is
varied, the pencil traces arcs of all confocal hyperbolas.

The same string fastened to the same points can also be used to trace a hy-
perbolic arc with the same foci. How is this possible? The bifocal property of the
hyperbola states that the difference of distances (longer minus shorter) from any
point on the hyperbola to the foci is constant. Nevertheless, a slight modification
of the string construction for the ellipse shows how to do it.

The points of intersection of an ellipse with the line through its foci are called
its vertices. Take a thin rigid tube shorter than the string but longer than the
distance from a focus to the nearest vertex. Pass part of the string through the
tube and fasten the ends of the string to the foci as before. One end of the tube
pivots at a focus, like one hand of a clock. The free end traces a circle that plays
a crucial role in this chapter. A pencil keeps the string taut by pushing it outward
or inward in the radial direction of the tube. If it pushes outward, the tube plays
no role and the pencil traces part of the ellipse as in Figure 8.1a. But if it pushes
inward along the edge of the tube, it traces a portion of a confocal hyperbola lying
inside the ellipse, as in Figure 8.1b. By varying the length of the tube you can draw
a family of confocal hyperbolic arcs (Figure 8.1c). Because the arcs are confocal
with the ellipse, they intersect it orthogonally. One of the arcs so constructed is the
perpendicular bisector of the segment joining the foci.

To verify that the modified string construction works as claimed, let c denote the
constant length of the string, and assume the tube has length R < c/2 and rotates
about the focus F2 as in Figure 8.2. The string passes through the tube, and its ends
are attached to the foci F1 and F2. Now suppose the pencil at point P pushes the
string inward toward F2 as in Figure 8.2. The portion of the string inside the tube
has length R, and the portion along the outside edge of the tube has length R−PF2.
Because the total length of the string is c, we have c = R + (R − PF2) + PF1 =
2R − PF2 + PF1. Therefore PF1 − PF2 = c − 2R = constant, hence P lies on a
hyperbola with foci F1 and F2, as asserted.

Contents of this chapter.

The string mechanism that weds the ellipse and hyperbola leads in a natural way
to a generalization of the classical bifocal property, in which each focus is replaced
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pencil

tube of length R

F F21

P

Figure 8.2: Justification of the new string construction for the hyperbola.

by a circle, called a focal circle, centered at that focus. Focal circles are introduced
in Section 8.2, which also extends the string construction by using two tubes, each
pivoted at a focus. The free end of each tube traces a focal circle. Section 8.3
provides two surprising locus properties relating the sum and difference of distances
to the focal circles (Theorem 8.1) . Special pairs of focal circles, called circular
directrices, are also introduced in Section 8.3. Those familiar with paper-folding
activities for constructing an ellipse or hyperbola using a circle as a guide, will be
pleased to learn that the guiding circle is, in fact, a circular directrix. Section 8.4
proves an extended bifocal property for the ellipse and hyperbola, a converse to
Theorem 8.1, and shows that focal circles lead to a simple treatment of a problem
of Apollonius.

Although a parabola has only one focus, Section 8.5 shows that the extended
bifocal properties of the ellipse and hyperbola can be transferred to a parabola by
moving one focus to ∞. In the limit, a circular directrix centered at the moving
focus becomes the classical directrix of the parabola. An application is also given
to a pursuit problem involving conics. Section 8.6 uses a focal circle to extend the
eccentricity property common to all conics.

Focal circles should not be confused with focal disks of Chapter 7, which de-
scribed conics in terms of sums and differences of tangent lengths to the focal disks.

8.2 FOCAL CIRCLES FOR ELLIPSE AND HYPERBOLA

Start with two distinct points F1 and F2 that will serve as foci for an ellipse or
a hyperbola. Draw two coplanar circles C1 and C2, which we call focal circles,
centered at the foci with respective radii R1 ≥ 0 and R2 ≥ 0. The circles may or
may not intersect, and one of them might lie inside the other.

Figure 8.3 shows two intersecting focal circles that divide the plane into four
regions: region 1 inside C1 and outside C2, region 2 inside C2 and outside C1,
region 3 outside both C1 and C2, and region 4 inside both C1 and C2. In some
cases, one of regions 1, 2, or 4 may be empty.
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1 2
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P
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F F
1 2

Figure 8.3: Two focal circles that divide the plane into four regions.

String mechanism involving two tubes, one at each focus.

Focal circles provide a string mechanism for tracing both elliptic and hyperbolic arcs,
illustrated in Figure 8.4. Join the foci with a string of constant length c ≥ R1 +R2

that passes through two thin tubes, of lengths R1 and R2, which pivot around the
respective foci. Then c = R1 + R2 + d, where d is the length of the portion of the
string outside the tubes. Note that d is constant if the sum of the radii is constant.
This mechanism generalizes that in Figure 8.2, which occurs when R1 = 0. An
alternative but equivalent mechanism uses two clock hands of lengths R1 and R2

with a string of length d joining their free ends. A new feature, not needed in Figure
8.2, is the introduction of a ring that insures that the pencil keeps the string taut at
the intersection of the radial directions. The four diagrams in Figure 8.4 illustrate
how the mechanism works in each of the regions 3, 2, 4, and 1 of Figure 8.3.

Figure 8.5a shows a curvilinear trapezoid and its mirror image, each of which
can be traced by the string mechanism in one continuous motion through all four
regions in Figure 8.3. The upper trapezoid has two lower vertices on the boundary
of region 4, and two upper vertices on the boundary of region 3. Place the pencil
at the lower right vertex on circle C1, moving it through region 4 to the lower left
vertex on circle C2. As we show later, this traces an arc of an ellipse (the lower edge
of the trapezoid). Now continue the motion in region 1 to trace a hyperbolic arc
(the left edge of the trapezoid), and then in region 3 to trace another elliptical arc
(the upper edge of the trapezoid). Finally, return to the starting point by tracing
another hyperbolic arc in region 2 (the right edge of the trapezoid). Theorem 8.1a
will show that the length d of the portion of the string outside the tubes is the
same constant on each edge of the trapezoid. By changing the value of d we obtain
an entire family of trapezoids, as depicted in Figure 8.5b. As d shrinks to 0 the
trapezoid becomes a point of intersection of the focal circles.
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Figure 8.4: String mechanism involving two tubes. A ring keeps the string taut at the
intersection of the radial directions.

(a) (b) 

Figure 8.5: (a) A curvilinear trapezoid and its mirror image, each traced by one continuous
motion of the two-tube string mechanism. (b) A family of trapezoids obtained by varying
the length of the portion of the string outside the tubes.
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8.3 TWO LOCUS PROPERTIES RELATING THE ELLIPSE AND
HYPERBOLA

This section introduces two new and surprising locus properties relating the ellipse
and hyperbola. Refer to the focal circles in Figure 8.3. Choose a point P in the
plane of the circles, and let f1 be the distance from P to F1, and f2 the distance
from P to F2. Also, let d1, d2 be the respective shortest distances from P to focal
circles C1 and C2, each measured radially, so that d = d1 + d2 is the length of the
portion of the string outside the tubes in the string mechanism. Figure 8.3 shows
two choices of P , one in region 2, the other in region 4. We note that the following
relations hold in Figure 8.3:

In region 1, d1 = R1 − f1 and d2 = f2 −R2. (8.1)

In region 2, d1 = f1 −R1 and d2 = R2 − f2. (8.2)

In region 3, d1 = f1 −R1 and d2 = f2 −R2. (8.3)

In region 4, d1 = R1 − f1 and d2 = R2 − f2. (8.4)

By adding d1 and d2 in each region we obtain:

Lemma 8.1. (1) If P is in region 1, then d1 + d2 = (f2 − f1)− (R2 −R1).
(2) If P is in region 2, then d1 + d2 = (f1 − f2)− (R1 −R2).
(3) If P is in region 3, then d1 + d2 = (f1 + f2)− (R1 +R2).
(4) If P is in region 4, then d1 + d2 = (R1 +R2)− (f1 + f2).

When d1 + d2 is constant, Lemma 8.1 reveals the following information about
the curves traced by the string mechanism:

In region 1, f2 − f1 is constant and P traces part of a hyperbola with foci F1

and F2. In Figure 8.5a, this part is shown as two solid arcs on the left branch of
this hyperbola.

In region 2, f1 − f2 is a different constant and P traces part of a different
hyperbola with the same foci. In Figure 8.5a, this part is shown as two solid arcs
on the right branch of the second hyperbola.

In region 3, f1 + f2 = R1 + R2 + d1 + d2 = c, the length of the string, and P
traces part of an ellipse, shown in Figure 8.5a as two solid elliptical arcs.

In region 4, the constant focal sum f1 + f2 differs from that in region 3, and P
traces two solid arcs of the smaller ellipse shown in Figure 8.5a.

By subtracting distances d1 and d2 in each region, we obtain:

Lemma 8.2. (1) If P is in region 1, then d2 − d1 = (f1 + f2)− (R1 +R2).
(2) If P is in region 2, then d1 − d2 = (f1 + f2)− (R1 +R2).
(3) If P is in region 3, then d1 − d2 = (f1 − f2)− (R1 −R2).
(4) If P is in region 4, then d2 − d1 = (f1 − f2)− (R1 −R2).

When |d1 − d2| is constant, Lemma 8.2 reveals the following information about
the curves traced by the string mechanism:
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In regions 1 and 2, the focal sum f1 + f2 = R1 + R2 + |d1 − d2| is constant,
so P traces an elliptical arc. Each of these arcs, shown dashed in Figure 8.5a, is
a continuation of a corresponding solid elliptical arc in Figure 8.5a, because their
focal sums agree at those points where the arcs intersect the focal circles.

A similar analysis shows that each dashed hyperbolic arc in regions 3 and 4 of
Figure 8.5a is a continuation of a corresponding solid hyperbolic arc in regions 1
and 2. Thus, from Lemmas 8.1 and 8.2 we deduce:

Theorem 8.1. (a) The locus of points P such that d1 + d2 is constant is part of
an ellipse or a hyperbola.
(b) The locus of points P such that |d1 − d2| is constant is part of an ellipse or a
hyperbola.

Proof. Part (a) follows from Lemma 8.1, and part (b) from Lemma 8.2.

Theorem 8.1 uncovers the surprising fact that use of focal circles allows each of
d1 + d2 and |d1 − d2| to be constant on both the ellipse and hyperbola.

Circular directrices for the ellipse and hyperbola.

Unlike central conics (ellipse and hyperbola), which have two foci, a parabola has
only one focus F . It can be described as the locus of a point P that moves in a
plane with its focal distance PF always equal to its distance PD from a fixed line
D, called its directrix. Now we introduce an analogous equidistant property for
central conics, using two special focal circles with the property that from each point
of the central conic, the shortest distances to the two focal circles are equal. If such
focal circles exist, we call them circular directrices. Now we will show that Lemma
8.2 implies that they do exist and tells us how to determine them.

A point P is equidistant (equal shortest distances) from the two focal circles if,
and only if, d1 = d2. According to Lemma 8.2, this happens in regions 1 and 2 of
Figure 8.3 when R1 + R2 = f1 + f2, and the same occurs in regions 3 and 4 when
R1 −R2 = f1 − f2.

On an ellipse, the constant sum f1 + f2 represents the length of the major axis
of the ellipse, while on a hyperbola the constant difference |f1 − f2| represents the
length of the transverse axis. This gives us the following:

Description of circular directrices. Any two focal circles with sum of radii
R1 + R2 = f1 + f2 serve as a pair of circular directrices for the ellipse; any two
focal circles with |R1 −R2| = |f1 − f2| serve as a pair of circular directrices for the
hyperbola.

Each central conic has infinitely many pairs of circular directrices. Figure 8.6a
shows three pairs of circular directrices for an ellipse. In (a), R1 = 0, C1 becomes
the focus F1, and R2 = f1 + f2, so the entire ellipse lies inside the focal circle C2,
hence in region 2. Each point on the ellipse is equidistant from focus F1 and from
this particular focal circle C2, as depicted in Figure 8.6a. This circular directrix
C2 is used in standard paper-folding constructions for the ellipse. It was also used
by Feynman [42; p. 152] in his geometric treatment of Kepler’s laws of planetary
motion.
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(a) (b) (c)

Figure 8.6: An ellipse and three pairs of its circular directrices. In (a), R1 = 0 and
R2 = f1 + f2. In (b) and (c), R1 > 0 and R2 = f1 + f2 − R1. For each P on the ellipse,
the shortest distances d1 and d2 to the focal circles are equal.

In Figures 8.6b and 8.6c, both circular directrices have positive radii, but the
sum of the radii is constant, so an increase in R1 results in a corresponding decrease
in R2. In Figure 8.6b, the entire ellipse is in region 2, but in Figure 8.6c part of the
ellipse is in region 2 and the remaining part in region 1.

(a) (b) (c)

Figure 8.7: One branch of a hyperbola and three pairs of its circular directrices. In (a),
R1 = 0, R2 = f2 − f1. In (b) and (c), R1 > 0, R2 = f2 − f1 + R1. For each P on the
hyperbola, the shortest distances d1 and d2 to the focal circles are equal.

Figure 8.7 shows three pairs of circular directrices for one branch of a hyperbola.
In Figure 8.7a, R1 = 0 and R2 = f2− f1. This circular directrix is used in standard
paper-folding constructions for the hyperbola. In Figures 8.7b and 8.7c, R1 > 0
and R2 = f2 − f1 + R1, so an increase in R1 results in a corresponding increase in
R2.

One may very well ask “What about the other branch of the hyperbola”?

Figure 8.8 shows both branches and reveals something new. From any point P
there are two distances to each focal circle, the shortest distances, which we have
denoted by d1 and d2, and the longest distances which we denote by D1 and D2.
The difference Di − di is 2Ri, the diameter of focal circle Ci. The longest distance
D2 plays a role on the second branch. Figure 8.8a shows both branches of the
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(a) (b)
H1 H1 H1 H1H2 H2

Figure 8.8: (a) Both branches of hyperbola in Figure 8.7a. For each P on the right branch
the shortest distance d1 is equal to the longest distance D2. (b) Two confocal hyperbolas
H1 and H2 with transverse axes of different lengths.

hyperbola in Figure 8.7a, labeled as H1. Here we have d1 = D2 on the second
branch. In other words, the shortest distance to C1 is equal to the longest distance
to C2. In this case, C1 = F1 because R1 = 0.

But when R1 > 0 and R2 = f2 − f1 +R1, a new phenomenon occurs. A second
hyperbola comes into play with the same foci but with a different transverse axis, as
shown in Figure 8.8b. Let H1 denote the hyperbola with the shorter transverse axis,
and H2 the one with the longer. Each point on the left branch of H1 has d1 = d2,
as in Figure 8.7, but each point on the right branch of H1 has D1 = D2. On the left
branch of H2 we have D1 = d2, and on the right branch of H2 we have d1 = D2,
as indicated by the tick marks in Figure 8.8b. Thus, the circular directrices play
a deeper role than was revealed in Figure 8.6. This is illustrated further in Figure

(a) (b)
H1 H1

E2
E1E2

Figure 8.9: (a) Hyperbola H2 in Figure 8.8b is replaced by ellipse E2. (b) Hyperbolas
H1 and H2 in Figure 8.8b are replaced by ellipses E1 and E2, respectively.
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8.9a, which can be thought of as a continuation of Figure 8.8b. As R2 increases,
the asymptotes of H2 become more and more horizontal until R2 reaches a critical
value for which H2 degenerates to a pair of rays emanating from the foci.

For points on the degenerate hyperbola, |f2 − f1| is the distance between the
foci, which is also f1+f2, the sum of focal distances from points on the line segment
joining the foci. This segment is a degenerate ellipse. As R2 increases beyond the
critical value and the circular directrices C1 and C2 intersect as shown in Figure
8.9a, hyperbola H2 in Figure 8.8b is replaced by a confocal ellipse E2 on which
d1 = d2. On the left branch of H1 we have d1 = d2, and on its right branch we
have D1 = D2, as in Figure 8.8b. As R2 increases further, so that C2 contains C1

in its interior, as in Figure 8.9b, H1 also degenerates and is replaced by a second
confocal ellipse E1 on which d1 = d2.

In what follows, results are stated in terms of the shortest distance di to the
focal circle Ci. Any problem involving the longest distance Di can be reduced by
the substitution Di = di + 2Ri to an equivalent problem involving the shortest
distance di.

8.4 EXTENDED BIFOCAL PROPERTY: ELLIPSE AND HYPERBOLA

The next theorem provides an extended bifocal property that has the same form
for the ellipse and the hyperbola. It is stated in terms of shortest distances d1, d2
to the focal circles. The sum of focal distances f1 + f2 from a point on an ellipse
to its foci is a constant, the length of the major axis, which we denote by A. On a
hyperbola, the difference |f1 − f2| of focal distances is another constant, the length
of the transverse axis, which we denote by B. On the left branch (enclosing F1) we
have f2 − f1 = B, and on the other branch we have f1 − f2 = B.

Theorem 8.2. (a) Given an ellipse with major axis of length A, and two focal
circles C1, C2 of radii R1, R2, let d = R1 +R2−A. Then each point on the ellipse
satisfies one of

d1 + d2 = |d| (8.5)

|d1 − d2| = |d|. (8.6)

(b) Given a hyperbola with transverse axis of length B, and given the same focal
circles as in (a), let d′ = B− (R1+R2). Then each point on the left branch satisfies
one of

d1 + d2 = |d′|+ 2R1 (8.7)

|d1 − d2| = |d′|+ 2R1. (8.8)

Each point on the right branch satisfies one of

d1 + d2 = |d′|+ 2R2 (8.9)

|d1 − d2| = |d′|+ 2R2. (8.10)

If R1 = R2, then on both branches we have d1 + d2 = B or |d1 − d2| = B.
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Proof of (a). We consider cases, depending on the sign of d.

Case 1: d ≤ 0, so R1 +R2 ≤ A.

If both focal circles lie inside the ellipse, then d1 = f1 − R1 and d2 = f2 − R2,
hence d1 + d2 = f1 + f2 − (R1 +R2) = A− (R1 +R2) = −d = |d|, so (8.5) holds on
the entire ellipse.

If the ellipse intersects a focal circle, say C1, then at the point of intersection we
have d1 = 0, f1 = R1, d2 = f2 −R2 = A− f1 −R2 = A− (R1 +R2) = −d = |d|, so
both (8.5) and (8.6) hold at this point. But Lemma 8.1(3) shows that for this value
of d, (8.5) holds for every point of the ellipse in regions 1 or 2. A similar argument
works if the ellipse intersects focal circle C2. This proves (a) in Case 1.

Case 2: d > 0, so R1 +R2 > A.

Now the focal circles intersect each other and also intersect the ellipse. At a point
where C1 intersects the ellipse we have d1 = 0, f1 = R1, d2 = f2−R2 = A−f1−R2 =
A− (R1 + R2) = −d, so d1 − d2 = d = |d| at the point of intersection. By Lemma
8.2(1), d1 − d2 = d for every point of the ellipse in region 1, and d2 − d1 = d in
region 2. Also, Lemma 8.1(4) shows that d1 + d2 = d for every point of the ellipse
in region 4. This proves (a) in Case 2.

Proof of (b). On a hyperbola |f1 − f2| is constant, so B = |f1 − f2|. Again we
consider two cases, depending on the relation between B and R1 +R2.

Case 1: B ≥ R1 +R2.

In this case the focal circles do not intersect, and at most one of them can
intersect the hyperbola. If neither focal circle intersects the hyperbola, then f1 =
R1 + d1 and f2 = R2 + d2, so d1 − d2 = f1 − f2 + R2 − R1, which is the same as
d2 − d1 = f2 − f1 + R1 − R2. On the left branch, f1 < f2, so f2 − f1 = B and
d2 − d1 = B +R1 −R2 = B − (R1 +R2) + 2R1, so (8.8) is satisfied everywhere on
this branch.

On the right branch, f2 < f1, so f1 − f2 = B and d1 − d2 = B + R2 − R1 =
B − (R1 +R2) + 2R2, so (8.10) is satisfied everywhere on this branch.

Now suppose that one focal circle, say C1, intersects the hyperbola. At a point
of intersection we have d1 = 0, R1 = f1 so d2− d1 = f2−R2 = f2− f1 +R1−R2 =
B + R1 − R2 = B − (R1 + R2) + 2R1. By Lemma 8.2(3), d2 − d1 has the same
value everywhere in region 3, so (8.8) holds everywhere in region 3. Now by Lemma
8.1(1), in region 1 we have d1 + d2 = f2 − f1 − R2 + R1 = B − (R1 + R2) + 2R1,
so (8.7) holds everywhere in region 1. Therefore either (8.7) or (8.8) holds on the
left branch, whereas (8.10) holds everywhere on the right branch. If, however, C2

intersects the hyperbola, then the same type of argument shows that either (8.9)
or (8.10) holds on the right branch, and (8.8) holds everywhere on the left branch.
This proves (b) in Case 1.

Case 2: B < R1 +R2.

In this case the focal circles overlap and each intersects the hyperbola. The
same type of argument used for Case 1 shows that, on the left branch, (8.7) holds
in regions 3 and 4, and (8.8) holds in region 1. Similarly, on the right branch, (8.9)
holds in regions 3 and 4, and (8.10) holds in region 2.
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Application to Apollonius’s kissing circles problem.

Focal circles for central conics can be used to give a simple treatment of a classical
three-circle problem attributed to Apollonius [47; p. 182]. First we consider the
following:

Two-circle locus problem. Choose two distinct circles C1 and C2 in the same
plane with centers at points F1 and F2. The circles may or may not intersect, and
one of them might lie inside the other. We are interested in finding a third circle C
tangent to both C1 and C2.

Solution. There are, of course, infinitely many such circles C. By regarding C1

and C2 as focal circles, it is easy to show that the locus of all their centers is a central
conic with foci at F1 and F2. We omit details except to suggest consideration of
the following cases:

(a) Nonintersecting C1 and C2, neither inside the other. In this case the locus
is a hyperbola if (a1) both C1 and C2 are inside C, (a2) both are outside C, and
(a3) one is inside C and the other is outside C.

(b) Nonintersecting C1 and C2, with C1 inside C2. In this case the locus is an
ellipse. There are two subcases: (b1)C inside C2 and outside C1, and (b2)C1 inside
C inside C2.

(c) Intersecting C1 and C2. In this case the locus is (c1) an ellipse if C is inside
one of C1 or C2 and outside the other, or (c2) a hyperbola if C is outside both C1

and C2, or inside both C1 and C2.
We turn now to the three-circle problem of Apollonius:

Apollonius problem. Choose three coplanar circles C1, C2, C3 with respective
centers at F1, F2, F3. Find a fourth circle C tangent to all of the given circles.

If C exists, it is tangent to each pair of the three circles. By considering one pair
of circles at a time, say C1 and C2, our two-circle locus problem tells us that the
center of C lies on a central conic with foci F1, F2. Similarly, it lies on a central conic
with foci F1, F3, and on a central conic with foci F2, F3. The point of intersection
of these central conics is the center of C, which is equidistant to each of the Ci.

8.5 BIFOCAL PROPERTIES TRANSFERRED TO THE PARABOLA

The extended bifocal properties of the central conics were obtained by replacing each
focus by a focal circle. Although the parabola has only one focus, we can transfer
the extended bifocal properties to the parabola by keeping one focal circle fixed
and moving the second focus to ∞, allowing the radius of the second focal circle to
increase without bound. The second focal circle now becomes a line perpendicular
to the focal axis, which we call a floating focal line. The central conic becomes a
parabola whose focus is the center of the fixed focal circle, and whose directrix is
parallel to the floating focal line. As expected, the bifocal properties of the central
conics can be transferred to the focal circle and the floating focal line.

This process is consistent with the geometric definition of conics as sections of
a cone. Recall that a plane cutting one nappe of a right circular cone produces
an ellipse. As the plane is tilted to become nearly parallel to a generator of the
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cone, the ellipse becomes more elongated, and when the cutting plane is parallel
to a generator the intersection becomes a parabola. Tilt the plane even further so
it cuts both nappes, and the intersection is a hyperbola. Thus, as a section of a
cone, the parabola is a transition between the ellipse and hyperbola, so it is not
surprising that properties of the parabola can be obtained as limiting cases of those
of a central conic.

First we introduce the parabolic version of circular directrices. For central conics,
circular directrices occur in pairs, each a special focal circle. In the parabolic version,
one of the circular directrices is replaced by a limiting line called a floating directrix.

Pairs of circular and floating directrices for the parabola.

A parabola has only one focus F , and is the locus of a point P that moves in a
plane with its focal distance PF always equal to its distance PD from a fixed line D,
called its directrix (Figure 8.10a). We call D the linear directrix of the parabola, to
distinguish it from circular directrices, which we define as follows. A line L parallel
to directrix D we call a floating focal line. In Figures 8.10b and 8.10c, L is between
F and D. Let R denote the distance between L and D. Then the focal circle C(R)
of radius R and center F is called a circular directrix for the parabola, relative to
L. In this context, L is also called a floating directrix corresponding to the circular
directrix. This terminology was chosen because for every point P on the parabola
we have dC = dL, where dC is the shortest distance from P to focal circle C(R),
and dL is the distance from P to L. The common distance is PF −R, as shown in
Figures 8.10b and 8.10c. When the radius of C is zero, circular directrix C becomes
the focus of the parabola, and floating directrix L becomes its classical directrix D,
as in Figure 8.10a.

L=D

F

D L D L D D' L

(a) (b) (c) (d) 

Figure 8.10: (a) Focus and directrix of a parabola. In (b)-(d), circular directrix and
floating directrix. In (d), two intersecting confocal parabolas with linear directrices D and
D′, but with the same circular directrix and floating directrix.

As expected, each circular directrix of a parabola can be obtained as the limiting
case of a circular directrix of a central conic by sending one of the foci to ∞. To
illustrate, begin with an ellipse and two circular directrices C1, C2, as in Figure 8.6b
or 8.6c, where d1 = d2 for each point on the ellipse. Let Q be the point where C2

intersects the focal axis. Keep F1, R1, and Q fixed, and move F2 along the focal axis
arbitrarily far away, so that R2 → ∞. Then, the limiting circle C2 becomes a line
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L through Q perpendicular to the focal axis. The radial distance d2 becomes dL,
the distance from P to L, and the ellipse becomes a limit curve with the property
that d1 = dL at each of its points. This limit curve is, in fact, a parabola with
focus F1 and linear directrix D, whose distance from L is R1, because each of its
points is equidistant from F1 and D. The circular directrix C1 for the ellipse is now
a circular directrix for the parabola with L as its floating directrix. The parabola
opens to the right, as in Figures 8.10b and 8.10c. The choice of Q determines the
position of the floating directrix L.

We can arrive at the same circular directrix and the same floating directrix L
by starting with the left branch of the hyperbola shown in Figure 8.7, keeping F1,
R1, and Q fixed as before, and letting R2 → ∞. If Q is between F1 and the vertex
of the left branch, as in Figure 8.7c, the limit curve is a parabola that opens to the
left and intersects the first parabola, as shown by the example in Figure 8.10d, with
its linear directrix D′ parallel to L. Both parabolas intersect the floating directrix
L and the circular directrix at the same points.

For a fixed focus F1, the resulting parabola depends on two parameters, R1 and
Q. Figure 8.11 shows what happens when R1 is fixed and the initial point Q moves
to the right, starting from a point to the left of circular directrix C1. The floating
directrix L, which always passes through Q, moves as shown in Figure 8.11. In
Figures 8.11a and 8.11b, the parabola opens to the right, and its linear directrix D
is at a distance R1 to the left of L, with d1 = dL at each point P of the parabola.
But when L becomes tangent to the circular directrix, as in Figure 8.11c, a second
parabola enters the scene. For a point P on the portion of the focal axis with right
endpoint at the focus, we have d1 = dL, just as on the earlier parabolas. So this
portion of the focal axis can be regarded as a degenerate parabola with the same
focus, and with the same circular directrix. But its linear directrix is a line D′

parallel to L passing through the focus.

L L L L L L L L L

(a) (b) (c) (d) (f) (g) (h) (i)(e)

Figure 8.11: In (a) and (b), the floating directrix L is to the left of the circular directrix
C1. In (c) through (g), it intersects C1, and in (h) and (i) it is to the right of C1. The
parabolas in (f) through (i) are mirror images of those in (d) through (a).

As L continues moving to the right, two parabolas appear with the same circular
directrix, as in Figures 8.11d, e, and f. They have a common focus F1 and a common
floating directrix L. One opens to the right, the other to the left, and they intersect
on L. Their linear directrices D and D′ are parallel, each at distance R1 from L.
When the floating directrix L becomes tangent to the other side of the circular

ApostolGeoChapter 8.indd   16ApostolGeoChapter 8.indd   16 10/1/12   11:57 AM10/1/12   11:57 AM



8.5. BIFOCAL PROPERTIES TRANSFERRED TO PARABOLA 259

directrix, as in Figure 8.11g, the first parabola degenerates to another ray, the
portion of the focal axis with its left endpoint at the focus. In Figures 8.11h and
i, L moves further to the right, and we are back to one parabola that now opens
to the left. The parabolas in Figures 8.11f, g, h, i, are mirror images of those in
Figures 8.11d, c, b, a, respectively.

We could keep the initial point Q fixed and allow R1 to increase and obtain a
new sequence of parabolas analogous to those in Figure 8.11 with focal circles of
increasing radii. But, by scaling these circles so they have equal radii, we get a
collection of parabolas resembling those that are shown in Figure 8.11.

Parabolic version of the extended bifocal properties.

The extended bifocal properties of central conics in Theorems 8.1 and 8.2 have
counterparts for the parabola. They can be obtained by starting with two focal
circles C1 and C2 of a central conic, and letting the radius of one of them, say
R2, go to ∞, keeping F1, R1, and Q fixed, as was done earlier. The limiting C2

becomes a floating focal line L through Q perpendicular to the focal axis, and the
limiting central conic becomes a parabola with focus F1 and focal circle C1. The
new properties relate C1 and L.

Figure 8.12a shows what happens to Figure 8.3 in the limiting case, and Figure
8.12b shows how the four central conics in Figure 8.5a become four parabolas.

1

2
3

4

(a) (b) (c) 

Figure 8.12: (a) Four regions formed by a focal circle and a coplanar line. (b) Limiting
case of Figure 8.5a when the ellipses and hyperbolas become four parabolas. (c) A family
of parabolic trapezoids obtained as the limiting case of the family in Figure 8.5b.

On the solid portions of the parabolas, the sum of distances d1+dL to the focal
circle and the floating focal line is constant, just as on the corresponding ellipses and
hyperbolas in Figure 8.5a. On the dashed portions, the absolute difference |d1−dL|
is constant, just as on the corresponding central conics in Figure 8.5a. Figure 8.12b
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also illustrates the following parabolic counterparts of Theorems 8.1 and 8.2, whose
proofs are omitted.

Theorem 8.3. Given a circle C with center at F , and a coplanar line L, if P is
in the plane of C and L, let dC and dL denote the shortest distances from P to C
and L, respectively. Then the locus of points P such that either the sum dC + dL or
the absolute difference |dC − dL| is constant is part of a parabola with focus F and
directrix parallel to L.

Theorem 8.4. Given a parabola with a focal circle C, and given any line L parallel
to its directrix D, whose distance from D is the radius of C, then either the sum
dC + dL or the absolute difference |dC − dL| is constant.

String construction for the parabola.

When focal circle C has radius 0, the property that dC + dL is constant reduces to
dF + dL is constant, and leads to a string construction for the parabola, illustrated
in Figure 8.13a. One endpoint of a string of constant length is fastened to a fixed
point, but the other end is attached to a small ring that slides freely along a rigid rod
(a fixed line) that may or may not pass through the fixed point. The string is kept

circular directrix

floating directrix

(a) (b)

Figure 8.13: (a) String construction that gives two confocal parabolas, one on either side
of the fixed line. (b) Justification of construction, using the common circular directrix of
the two parabolas, with the corresponding floating directrix.

taut by a pencil that moves so that the sum of distances from the pencil to the point
and to the line is the constant length of the string. The pencil traces a portion of a
parabola with the fixed point as its focus. A second parabola with the same focus
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can be drawn by placing the pencil on the other side of the fixed line, as indicated
in Figure 8.13a. Kepler [53; p. 110] devised a similar string construction for the
parabola that does not use a ring and produces only one of the two parabolas. Our
construction for two confocal parabolas is justified by the diagram in Figure 8.13b,
which shows the common circular directrix of the two parabolas with the fixed line
as floating directrix.

ring

ring ring
ring

d
d

1
2

(a) (b) 

Figure 8.14: Alternative string construction (a) for parabolas, using a focal circle, and
(b) for central conics, using two focal circles.

Figure 8.14a shows an equivalent form of the string construction in Figure 8.13a
with a focal circle C of radius R > 0 centered at F . Then dC = dF − R, and the
constant sum dF +dL is replaced by dC +dL = dF +dL−R, another constant. The
small ring that moves freely around the rigid boundary of the focal circle allows the
pencil to trace the parabolas in Figure 8.13. Similarly, the two tubes and the single
ring in the string mechanism of Figure 8.4 could be replaced by two small rings
(illustrated by two examples in Figure 8.14b) that move freely around the two focal
circles, with one end of the string attached to each ring. The pencil keeps the string
taut so that the two portions of the string are in the appropriate radial directions.

Application of Theorem 8.3 to a pursuit problem.

A classical pursuit problem involves an aircraft flying at constant speed v > 0 from a
point A toward a base F (Figure 8.15a). Because visibility is limited, an automatic
pilot always aims the aircraft toward F . Ordinarily, the path would be along a
straight line from A to F . However, a steady north wind with constant speed w
forces the aircraft off course, so its trajectory is along a curved path that depends
on the ratio of the speeds v and w. The problem is to determine the path.

If w > v, the craft cannot overcome the influence of the wind and moves further
away from the base, approaching asymptotically the line due north from F . But if
v > w, the aircraft overcomes the influence of the wind and returns to F along a
curved path. These two solutions, which seem intuitively reasonable, can also be
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verified analytically by solving a suitable differential equation. The dashed curves
in Figure 8.15a indicate the qualitative nature of the solutions. The line segment
from A to F shows the path when w = 0.

The case of interest for us is when w = v. In this case the solution of the

(a) (b) 

wind wind 

w  >  v 

w  =  v 

w  <  v 

w  = 0 

W 

V 

F 

P 

L 
v   sin 

F 

A 

Figure 8.15: (a) Qualitative shape of trajectory depends on speeds v and w. (b) When
v = w, the sum dF + dL is constant above L, whereas dF − dL is constant below L, hence
the trajectory is a parabola with focus F .

differential equation is part of a parabola, shown as the solid curve in Figure 8.15a.
The point F is the focus of this parabola. The aircraft moves along the parabola
until it is due north of F at which point it remains stationary because the effect of
its speed and that of the wind cancel each other. We shall obtain this solution by
applying Theorem 8.3.

Choose a line L through F perpendicular to the wind direction, as in Figure
8.15b. We regard L as a focal line, and let F serve as a focal point. Let P denote
a general point on the path of the aircraft, and let dF and dL denote its distances
from F and L, respectively, as indicated in Figure 8.15b. The line L divides the
trajectory into two parts, one above L and one below. We will show that the sum
dF + dL is constant when P is above L, and that the difference dF − dL is the same
constant when P is below L. By Theorem 8.3 with C = F , this will prove that the
path is a parabola with focus F .

Suppose P is above L. Let θ denote the angle between L and the line joining F
to P. In general, P moves along a tangent vector to the path with velocity V+W,
the resultant of two vectors V and W of lengths v = |V| and w = |W|. We are
considering the case in which w = v. The vector W, in the direction of the wind,
acts to increase dL at the time rate v. But V acts to decrease dL by a component
of magnitude v sin θ opposite to W. Hence the resultant V+W has a component

θ
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in the direction of W equal to v− v sin θ, which represents the time rate of change
of dL. Similarly, the component of the resultant in the direction of V is v sin θ − v,
which represents the time rate of change of dF . Therefore the time rate of change
of the sum dF + dL is zero, hence dF + dL is constant. This constant is dF when
dL = 0, and is the distance from F to the point where L intersects the trajectory.

When P is below L the analysis is similar, except that both V and W act
to decrease dL so the resultant V+W has a component in the direction of W of
magnitude v + v sin θ, whose negative is the time rate of change of dL, and a
component in the direction of V of the same magnitude, whose negative is the time
rate of change of dF . Therefore the time rate of change of the difference dF − dL is
zero, so dF − dL is constant, the same constant obtained when P is above L. Thus
the trajectory satisfies Theorem 8.3, so it is a parabola with focus at F .

Modified pursuit problem.

The problem can be modified so that the parabola is replaced by other conics.
Specifically, suppose a wind of constant speed v blows radially outward from a
point F0 different from F . In this case one can verify, with analysis similar to that
given above, that the aircraft moves along a portion of an ellipse with one focus at
F0 and the other focus at F . This application may not conform to reality, but other
more realistic physical situations can be imagined that involve the same ideas. If
the wind blows radially inward toward F0, then the aircraft moves along a portion
of a hyperbola.

8.6 CIRCULAR DIRECTRICES AND WAVE MOTION

A pebble dropped into a pool of water creates a frontal circular wave that expands
radially along the surface. When the wave strikes the boundary of the pool, a
reflected wave is formed, whose shape depends on the shape of the boundary. Now
assume the boundary of the pool is an ellipse and drop the pebble at a focus. What
is the shape of the reflected wave? We will show that it, too, is a circular arc centered
at the other focus. Moreover, at each instant the focal circles containing the wave
and its reflection are a pair of circular directrices for the ellipse.

M

F

M

N R

R
r

r

F

P

(a) (b)

1 F2 F21

Figure 8.16: (a) Frontal wave (b) Reflected wave.

Figure 8.16 illustrates the analysis for an elliptical boundary. When the frontal
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wave reaches M in Figure 8.16a, it has the shape of a circular arc with center at
the initial focus F1. Let r denote its radius. A tiny portion of the wave around M
is reflected from the elliptical wall according to the reflection property common to
all waves and particles: the angle of reflection is equal to the angle of incidence.
Because the boundary is an ellipse, the reflected portion will move directly toward
the second focus along the dashed line in Figure 8.16a, and the reflected wave will
have the shape of another curve passing through M (Figure 8.16b). To determine
the shape, consider another tiny portion of the frontal wave that has been reflected
earlier, say from point N . That portion is also directed toward the second focus and
is located at some position P on the reflected wave. We will show that the distance
R = PF2 from P to F2 is independent of P . The two portions move with the same
speed, so F1N +NP = F1M = r. But F1N +NF2 = 2a, the length of the major
axis of the ellipse. Subtracting the last two equations we find NF2 −NP = 2a− r.
But NF2 − NP = PF2 = R = 2a − r, a constant independent of P . Thus the
frontal wave and the reflected wave are parts of two focal circles of respective radii
r and R. But r +R = 2a, so these circles are circular directrices for the ellipse.

If the pebble is dropped at one focus of a hyperbolic pool, the reflected wave
is again a circular arc expanding away from the second focus. And if the pebble
is dropped at the focus of a parabolic pool, the reflected wave will be a float-
ing directrix moving away from the vertex of the parabola. For animation, see
www.mamikon.com/Pool/FocalWave.html.

8.7 EXTENDED ECCENTRICITY PROPERTIES OF CONICS

All three types of conics are often described by a classical eccentricity property
(Figure 8.17a), as the locus of a moving point P whose distance dF from a fixed
point F (a focus) is a constant e times its distance dD from a fixed line D (the
directrix). The constant ratio e is the eccentricity.

F

D L

P
P

C

(a) (b)

Figure 8.17: (a) Classical eccentricity property of all conic sections: dF = edD for each
P . (b) Extended eccentricity property: dC = edL for each P .
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The classical eccentricity property is written as

dF = edD, (8.11)

and the conic is an ellipse if 0 < e < 1, a parabola if e = 1, and a hyperbola if
e > 1. Now we replace the focus F by a circle C and we replace the directrix D by
an arbitrary line L coplanar with C, and extend the eccentricity property (8.11) as
follows.

Theorem 8.5. Given a circle C, a coplanar line L, and a constant e > 0. For any
point P in the plane of L and C, let dL and dC denote the shortest distances from
P to L and C, respectively. Then the locus of all P such that

dC = edL (8.12)

is a conic with eccentricity e and a focus at the center of C. The same is true if dC
is replaced by DC , the longer distance from P to C.

Proof. Denote the center of C by F and its radius by r. If P is outside C there
are two distances dC , given by dF ± r. The shorter is dC = dF − r, and (8.12) is
equivalent to dF − r = edL, or dF = edL + r = e(dL + r/e). But dL + r/e = dD,
the distance from P to a line D parallel to L and at distance r/e from L. Thus,
(8.12) is equivalent to dF = edD, and by (8.11) the locus is a conic with focus F,
eccentricity e, and directrix D.

If DC is the longer distance to C, then DC = dF + r, and the same argument
gives dF = e(dL− r/e) = ed′D, where d′D is the distance from P to the other line D′

parallel to L and at distance r/e from L. In other words, if DC denotes the longer
distance to C the locus is again a conic with focus F and eccentricity e, but with
directrix D′. Similarly, for points P inside C the same conclusion (8.12) is valid.

When Theorem 8.5 is specialized so circle C shrinks to its center F, then (8.12)
becomes dF = edL, which is the classical result (8.11) with L = D. Theorem 8.5 is
the special case c = 0 of the following more general result, whose proof is omitted.

Theorem 8.6. Given a circle C, a coplanar line L, a constant e > 0 and a constant
c ≥ 0, for any point P in the plane of L and C let dL and dC denote the shortest
distances from P to L and C, respectively. Then the locus of all P such that

|dC ± edL | = c (8.13)

is a conic with eccentricity e, and a focus at the center of C. The same is true if
dC is replaced by DC , the longer distance from P to C.

When C is replaced by its center F we obtain the following

Corollary 8.1. The locus of all P such that

|dF ± edL | = c (8.14)

is a conic with eccentricity e, a focus at F , and directrix at distance c/e from L.
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(a) (b) (c)

Figure 8.18: Examples of conics with (a) dF + edL = ed, (b) edL − dF = ed, and (c)
dF − edL = ed.

Corollary 8.1 is illustrated by the examples in Figure 8.18.

NOTES ON CHAPTER 8

Except for Section 8.6 on reflected waves, the material in this chapter first
appeared in [25]. The material in Section 8.6 has not been previously published.

In this chapter we learned that the simple idea of replacing each focus of a conic
by a focal circle has profound consequences. It allows us to obtain new characteristic
properties of central conics and to extend them to a parabola.

The classical characterization of an ellipse as the locus of points whose sum of
focal distances f1 + f2 is constant, and the hyperbola as the locus of points whose
absolute distance |f1 − f2| is constant, has been generalized to a common bifocal
property |d1 ± d2| is constant, where d1 and d2 are the shortest distances from a
point to the focal circles. By allowing the radius of one of the focal circles to become
infinite, we obtained corresponding properties for the parabola.

We also introduced special pairs of focal circles, called circular directrices, which
provide equidistant properties for central conics analogous to the classical focus-
directrix equidistant property for the parabola. A circular directrix also provides
an auxiliary tool to treat a variety of problems in a unified and elementary way.

The classical locus description of all three types of conics in terms of eccentricity
has also been generalized by using focal circles and floating focal lines.
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Chapter 9

TRAMMELS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

Figure (a) shows a curve G in the xy plane. Drop a perpendicular from each
point on G to each coordinate axis, and pass a line through the feet of the two per-
pendiculars, as shown by the two examples in (a). When this geometric construction
is done on graph paper, it leads to the following educational activity:

Fold the paper along each of the lines joining the axes, so each line appears as
a crease. By choosing many points on G and repeating this process, the positions
of the crease gradually reveal a curve having these creases as tangent lines. We call
this curve the envelope generated by G.

G
G

(a) (b)

If G is the line shown in (b), show that the envelope is a parabola.

(c) (d) (e)

Find a cartesian equation for the envelope when G is a circle: centered at the
origin as in (c), tangent to the y axis with center on the x axis as in (d), tangent
to both coordinate axes as in (e).

267
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9.1. INTRODUCTION. STANDARD TRAMMEL 269

9
The chapter begins with an elementary treatment of a standard trammel

(trammel of Archimedes), a line segment of fixed length whose ends slide along

two perpendicular axes. During the motion, points on the trammel trace

ellipses, and the trammel produces an astroid as an envelope that is also the

envelope of the family of traced ellipses. Two generalizations are introduced:

a zigzag trammel, obtained by dividing a standard trammel into several hinged

pieces, and a flexible trammel whose length may vary during the motion. All

properties regarding traces and envelopes of a standard trammel are extended

to these more general trammels. Applications of zigzag trammels are given

to problems involving folding doors. Flexible trammels provide not only a

deeper understanding of the standard trammel but also a new simple solution

of a classical problem of determining the envelope of a family of straight lines.

They also reveal unexpected connections between various classical curves; for

example, the cycloid and the quadratrix of Hippias, known from antiquity.

9.1 INTRODUCTION. STANDARD TRAMMEL

Figure 9.1a shows a line segment of fixed length whose ends slide along two perpen-
dicular axes. It can be realized physically as a sliding ladder or as a sliding door
moving with its ends on two perpendicular tracks. During the motion, a given point
on the segment traces an ellipse with one quarter of the ellipse in each quadrant
(Figure 9.1b), so this device is called an ellipsograph, a mechanism for drawing an
ellipse.

This particular ellipsograph was known to ancient Greek geometers and is often
called the trammel of Archimedes [70, p. 3], but we are not aware of any historical
evidence that suggests who invented it. We refer to it as a standard trammel to
distinguish it from two generalizations introduced in this chapter: a zigzag trammel,
obtained by dividing a standard trammel into several hinged pieces (Section 9.8),
and a flexible trammel whose length may vary (Section 9.9).

The ellipsograph feature alone makes the trammel an important object of study,
but it has other interesting properties discovered with methods of calculus that
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(a) (b)

Figure 9.1: (a) Standard trammel. Its endpoints move along perpendicular axes. (b)
Each point on the trammel traces an ellipse.

deserve to be better known. This chapter describes known properties of the standard
trammel as well as new ones that can be studied by simple geometric methods
that do not require calculus. The generalization to flexible trammels increases our
understanding of these properties and also leads to engaging classroom activities.

9.2 ELLIPSE TRACED BY A POINT ON A STANDARD TRAMMEL

To see why a point on a trammel AB of fixed length L traces an ellipse, we show
first that the midpoint M of AB traces a circle, as suggested by Figure 9.2a. Figure
9.2b shows the segment OM , together with perpendiculars from M to each axis,
dividing the large right triangle AOB into four congruent smaller right triangles,
each having hypotenuse of common length OM = AM = MB = L/2. Therefore,
M always lies on a circle with center at O and radius L/2. This also follows by
completing the rectangle OACB in Figure 9.2c.

M

O

A

B
(a) (b) 

M

O

A

B
(c)

M

O

A

B

C

Figure 9.2: (a) The midpoint M traces a circle of radius OM . (b) The triangle AOB
divided into four congruent right triangles. (c) The diagonals of a rectangle are equal and
bisect each other.
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The circle of radius L/2 has cartesian equation

(
x

L/2
)2 + (

y

L/2
)2 = 1. (9.1)

This is a special case of the general equation of an ellipse,

(
x

a
)2 + (

y

b
)2 = 1, (9.2)

traced by a point E = (x, y) on the trammel that divides it into segments of lengths
a = AE and b = EB, as indicated in Figure 9.3a. We deduce (9.2) from (9.1) by
relating the coordinates (x, y) of E with the coordinates (X,Y ) of the midpoint
M that satisfy (9.1). Similar triangles in Figure 9.3a reveal that x/a = X/(L/2),
and y/b = Y/(L/2), so (9.2) follows from (9.1). The same analysis holds if E is
anywhere on the line through the trammel, even if E is outside the trammel as in
Figure 9.3b. In all cases:

The semiaxes of the ellipse are the distances from E to the endpoints A and B.

A

B

M = (X,Y)

E

A

B

M

E(a) (b)

x

y

Figure 9.3: The coordinates (x, y) of E are related to those (X,Y ) of M as follows:
x/a = X/(L/2), and y/b = Y/(L/2), where a = AE and b = EB = |L− a|. In (a), E lies
between A and B; in (b), E lies outside AB but on the line through AB.

9.3 ASTROID AS THE ENVELOPE OF A STANDARD TRAMMEL

Next we show geometrically that a trammel of length L is always tangent to an
astroid, a hypocycloid traced by a point P on the circumference of a circle that rolls
without slipping inside a larger circle of radius four times as great. (See Chapter
2.) Figure 9.4a shows the larger circle of radius L centered at the origin, and the
smaller circle of radius L/4 rolling inside it.
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272 Chapter 9. TRAMMELS

Let C denote the point of tangency of the two circles. The midpoint M of OC
is on the smaller circle as shown. Triangle MPC is inscribed in a semicircle with
diameter MC, so the angle MPC is a right angle, as indicated. The line AB drawn
through PM , perpendicular to CP , is also tangent to the astroid at P because C is
the center of instantaneous rotation of the smaller circle as it rolls inside the larger
circle. Therefore, if we show that the length of AB does not change as P moves
along the astroid, this will show that AB is a trammel. To do this it suffices to
show that M is also the midpoint of AB, and that the triangle OMA is isosceles.

Refer to Figure 9.4b. The two circular arcs CL and CP have equal lengths
because the smaller circle rolls along the larger. The arc CL has length Lγ, where
γ is the central angle of the larger circle subtending arc CL. Similarly, CP has
length (L/4)β, where β is the central angle of the smaller circle subtending CP .
The arcs have equal length so β = 4γ, as indicated in Figure 9.4b. But the inscribed
angle CMP on the smaller circle is half the central angle, or 2γ. This is also the
vertical angle OMB. A vertical line throughM makes angle γ with OC, so it bisects

M M 

(a) (b) 

C 

O 

A 

B 

P 

astroid 

L 

r = L /4 

L 

trammel 

C 

O 

A 

B 

P 

astroid 

L 

γ

β= 4 γ

γγ

γ

α

2 r 

Figure 9.4: (a) A point P on the circle of radius L/4 traces an astroid as it rolls inside a
circle of radius L. (b) Proof that AB has constant length equal to L.

CMA as shown. Hence the triangle OMA is isosceles, with each base angle equal
to γ. This implies that OMB is also isosceles with base angles α complementary
to γ. Therefore AM = MB = MO = L/2, which shows that AB has fixed length
L, so it is a standard trammel, and we have already seen that it is always tangent
to the astroid.

This property is illustrated in Figure 9.7a, which shows various positions of the
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trammel as it slides along the coordinate axes in all four quadrants. It is described
by saying that:

The envelope of a moving trammel of fixed length is an astroid.

9.4 EQUATIONS FOR ELLIPSE, TRAMMEL, AND ASTROID

Figure 9.5 shows an ellipse with semiaxes a and b and two concentric circles with
radii a and b. A line from the origin making an angle α with the x axis is related
to the coordinates of a point E = (x, y) on the ellipse by the parametric equations

x = a cosα, y = b sinα. (9.3)

The angle α in (9.3) is called the eccentric angle of the ellipse (see [1, p. 522]).

α
O

E=(x,y)

B

A

α

radius a

radius b

x
y

Figure 9.5: Angle of inclination of a trammel is also the eccentric angle of traced ellipse.

Figure 9.5 also shows a line through E making the same angle α with the x axis.
It is easy to show that AB has length a + b. We simply note that AE cosα = x
so according to (9.3), AE = a. Similarly, BE sinα = y, giving BE = b. Therefore
segment AB is a trammel whose angle of inclination is the eccentric angle.

In Figure 9.6a, a line AB of length L makes an angle α with the x axis and is
tangent to the astroid at a point P with coordinates (x, y). First we note that every
point on the trammel satisfies the linear cartesian equation

x

L cosα
+

y

L sinα
= 1 (9.4)

because L cosα and L sinα are the x and y intercepts of the trammel.
To find a cartesian equation for the astroid we first determine parametric equa-

tions expressing the coordinates (x, y) of each point on the astroid in terms of α
and L. From Figure 9.6a, we see that

x = AP cosα, y = BP sinα. (9.5)

To express AP and BP in terms of L and α, we recall from Figure 9.4b that point
C of the rolling circle is a vertex of rectangle OACB. From the right triangle AOB

ApostolGeoChapter 9_v2.indd   7ApostolGeoChapter 9_v2.indd   7 10/3/12   2:33 PM10/3/12   2:33 PM



274 Chapter 9. TRAMMELS

in Figure 9.6a we see that AC = OB = L cosα, and from the right triangle APC we
have AP = AC cosα = L cos2 α. Similarly we find PB = L sin2 α. Using these in
(9.5) we see that each point (x, y) on the astroid satisfies the parametric equations

x = L cos3 α, y = L sin3 α. (9.6)

Using (9.6) together with cos2α + sin2α = 1 we obtain a cartesian equation of the
astroid:

(
x

L
)2/3 + (

y

L
)2/3 = 1. (9.7)

(a) (b)

P

A

B

x

y

α

α

O

C

E E

A

B

ca

b

θ

x
y

θ
θ

O

C

Figure 9.6: (a) Finding equations for an astroid. (b) The trammel is simultaneously
tangent to the ellipse and to the astroid at E when inclined at a special angle θ given by
(9.8).

9.5 COMMON TANGENCY OF TRAMMEL, ELLIPSE, AND ASTROID

In Figure 9.6a, the point P with coordinates (9.5) is on the trammel (9.4) and
on the astroid (9.7). The trammel is always tangent to the astroid but in general
it intersects the ellipse described by (9.3) at two points as in Figure 9.5. As the
trammel moves, the two points will coincide for some critical angle α, say α = θ as
shown in Figure 9.6b, and in this position the trammel is simultaneously tangent
to the ellipse and to the astroid at a point E with coordinates (a cos θ, b sin θ). The
following theorem determines θ in terms of the semiaxes a and b of the ellipse.

Theorem 9.1. The trammel is simultaneously tangent to the ellipse and to the
astroid when its angle of inclination θ with the x axis satisfies

tan θ =

√
b

a
. (9.8)

Proof. In Figure 9.6b, c = CE, and triangles AEC and BEC are similar, so
a/c = c/b, or c2 = ab. The triangle BEC reveals that tan θ = b/c = b/

√
ab =

√
b/a,

which proves (9.8).
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9.6. AREA OF AN ELLIPTICAL SECTOR 275

Note that C in Figure 9.6b is also the center of instantaneous rotation of the
trammel AB. As A moves downward, B moves to the right, and E moves in the
direction of AB as indicated. This also shows that the trammel is simultaneously
tangent to the ellipse and to the astroid at E. As a and b vary, keeping a+b constant,
the corresponding ellipses are tangent to the astroid. This property, illustrated in
Figure 9.7b, is described as:

The envelope of a family of ellipses with a+ b constant is an astroid.

(a) (b)

Figure 9.7: Astroid as the common envelope of (a) a moving trammel, and (b) a family
of traced ellipses.

A generalization of Theorem 9.1 to flexible trammels is given in Section 9.10,
leading to a common envelope for a flexible trammel and the curves traced by its
points.

9.6 AREA OF AN ELLIPTICAL SECTOR

The trammel is shown in Figure 9.8 as a segment AB of length a + b in the first
quadrant inclined at an angle α with the x axis. The ellipse is traced by E, where
AE has length a and EB has length b. As noted earlier, α is the eccentric angle of
the ellipse. Let S(α) denote the area of the shaded elliptical sector OE0E. Here,
E0 denotes the position of E when the trammel is horizontal. Then we have the
following simple result that we shall deduce without calculus:

Theorem 9.2. The elliptical sector OE0E has area

S(α) =
1

2
abα. (9.9)

Proof. The elliptical sector can be obtained from a circular sector with central
angle β and radius b (Figure 9.8b) by horizontal dilation by the factor a/b (Figure
9.8c). The circular sector has area b2β/2, so the dilated sector has area a/b times as
much or abβ/2. But Figure 9.8d shows that β = α because both are base angles of
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b
β

(b) (c) (d)

b
b

a

b
β α

α
O a E

E

B

a

A

b
b

(a)
0

Figure 9.8: (a) Elliptical sector OE0E determined by trammel inclined at angle α. (b)-(d)
Proof that the area of the sector is abα/2.

congruent right triangles having hypotenuses of equal length b and equal altitudes.
Therefore, this simple geometric argument gives (9.9).

When a = b the ellipse is a circle of radius b and (9.9) gives the area of a circular
sector in terms of the eccentric angle, which now equals the central angle.

The right member of (9.9) is linear in α, so the area of the sector of the ellipse
between two values of α, say 0 < α1 < α2 ≤ 2π, is ab(α2 − α1)/2. Thus the area of
a more general elliptical sector, such as that shown in Figure 9.9a is given by:

Area of general elliptical sector =
1

2
abϕ,

where ϕ = α2 − α1 denotes the angle between the two trammel positions, which is
also the change in eccentric angle. In particular, if ϕ is a right angle (two perpen-
dicular trammel positions) the area of the sector is πab/4, one quarter of the area
of a full ellipse. An example is shown in Figure 9.9b.

9.7 AREA OF AN ASTROIDAL SECTOR

It is known (see Chapter 2) that the area of the region enclosed by the astroid in
Figure 9.10a is 6 times the area of the smaller circular disk that traces the astroid,
so in each quadrant the astroidal area is 3/2 times that of the rolling disk.

Figure 9.10b shows the region in the first quadrant composed of a quarter of a
disk of radius 2r and area πr2, together with two congruent shaded regions between
the disk and the astroid. The rolling disk has radius r. We will show that each
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ϕ

O

a

E
a

bb

E

E

E

O a

b

π/2

(a) (b)

Figure 9.9: (a) Area of a general elliptical sector. (b) Special case with ϕ = π/2.

(a) (b) 
2r 2r

r

(c)

Figure 9.10: (a) The region enclosed by an astroid has area 6 times that of the rolling
circle. (b)The region in the first quadrant below the astroid has area 3πr2/2. (c) The area
of an astroidal sector is equal to that of a circular sector.

shaded region has area πr2/4, so the two regions together with the quarter disk
have area 3πr2/2. The surprising equality of the area of an astroidal sector with
that of a circular sector is illustrated in Figure 9.10c. Before verifying the formulas,
we mention an application to sliding doors.

Comparing a hinged door with a sliding door.

From Figure 9.10b we see that a door of length 4r hinged at the origin sweeps
out a floor space of area 4πr2. By comparison, a door of the same length sliding
along perpendicular tracks sweeps out a floor space of area 3πr2/2, which is 3/8 of
4πr2, an impressive saving of 62.5%. Examples involving sliding doors that fold are
discussed in Section 9.8.

The area of an astroidal sector will be deduced from a more general result,
illustrated in Figure 9.11a, where the shaded region is swept by the portion cut off
by the quarter disk of radius 2r as the trammel moves from a horizontal position
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to a general angle of inclination α as shown. We call this region a general astroidal
sector and denote its area by Ar(α). This region is an example of a tangent sweep,

O L

r

α
α

Q

r

4α

(a) (b)

M

C

P

(c)

π/4
2r

r 2r

2r

r

t
α

α
2r

(d)

π/2

α

2α

Figure 9.11: Calculating the area of a general astroidal sector.

and Figure 9.11b shows the corresponding tangent cluster, in which the tangent
trammel segments have been translated so that each point of tangency is moved to
a common point Q. Mamikon’s sweeping tangent theorem (Chapter 1) tells us that
the tangent sweep and the tangent cluster have equal areas. Using Figure 9.11 we
shall prove:

Theorem 9.3. The area of the general astroidal sector is given by

Ar(α) = r2α+
1

4
r2 sin 4α. (9.10)

Proof. Figure 9.11a shows the larger circle of radius L centered at the origin,
and the smaller circle of radius r = L/4 rolling inside it, with P denoting the point
on the astroid when the trammel has turned through angle α from the horizontal.
Point M , the midpoint of OC, is also on the smaller circle as shown, and t denotes
the length of the tangent segment PM . The argument used in Figure 9.4a shows
that the angle PMC in Figure 9.11a is equal to 2α, so t = 2r cos 2α. Therefore the
tangent cluster shown in Figure 9.11b is bounded by a portion of a rosette whose
polar coordinates (t, α) relative to the origin at Q satisfy t = 2r cos 2α.

The area of the tangent cluster in (b) can be easily calculated using calculus. It
can also be determined without calculus by noting that the area is half that of the
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portion of a semicircular disk enclosed by the inscribed angle 2α in (c). This area,
in turn, is equal to that of a circular sector of radius r subtended by a central angle
4α, which is 2r2α, plus that of an isosceles triangle with legs r and vertex angle 2α,
which is 1

2r
2 sin 4α, so the area of the region in (b), and hence that of the general

astroidal sector in (a), is given by (9.10).

When α = π/4 this gives πr2/4 for each astroidal sector in Figure 9.10b, and
proves the surprising area equality in Figure 9.10c.

Application: Area of the region swept by a portion of a trammel.

Figure 9.12a shows a trammel of length a + b simultaneously tangent to an ellipse
with semiaxes a and b and to an astroid at point E where it makes a critical angle
θ with the x axis as determined by (9.8). As applications of (9.9) and (9.10) we
shall calculate, in terms of a, b, and θ, the area A(θ) of the region swept out by the
trammel segment of length b as the trammel slides from a horizontal to a vertical
position. The region in question, under the ellipse and the astroid, is shown shaded
in Figure 9.12a. We build this region in four steps as shown in Figures 9.12b-e.

E 

A 

T O 

b b 

M 

θ
L a 

θ

(b) 

(a) 

(c) 

(d) 

(e) 

A 1 

A 2 

A 3 

A 4 

Figure 9.12: Region (a) swept by a portion of a trammel of length b constructed in (b)-(e).

The shaded region in Figure 9.12b, whose area we denote by A1, is like the
astroidal sector in Figure 9.10a cut off by the circle of radius 2r = (a+ b)/2. Figure
9.12c shows the astroidal sector of Figure 9.12b adjacent to a circular sector whose
area we denote by A2. In Figure 9.12d a triangle of area A3 has been removed from
the region of Figure 9.12c. In Figure 9.12e an elliptical sector of area A4 is added
to the region of Figure 9.12d, thus completing the shaded region in Figure 9.12a.
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Hence

A(θ) = A1 +A2 −A3 +A4, (9.11)

and now we calculate each area Ai separately.
From (9.10) we find A1 = Ar(θ) = r2θ + 1

4r
2 sin 4θ. Point M is the midpoint

of the trammel so OM also makes an angle θ with the x axis, hence the circular
sector in Figure 9.12c has area A2 = 2r2θ. In Figure 9.12d the area of the triangle
is the difference of areas of triangles OMT and OET in Figure 9.12a. They have
a common base (a + b) cos θ and respective altitudes 2r sin θ and b sin θ. Hence we
see that

A3 = (a+ b)(r − b

2
) sin θ cos θ = r(2r − b) sin 2θ.

Finally, from (9.9) we infer that the elliptical sector in Figure 9.12e has area A4 =
πab/4− abθ/2. Using these values in (9.11) we find A(θ) as the following Corollary
of Theorems 9.1, 9.2 and 9.3:

Corollary.

A(θ) = 3r2θ +
r2

4
sin 4θ − r(2r − b) sin 2θ +

ab

2
(
π

2
− θ), (9.12)

where r = (a+ b)/4, and θ is given by (9.8).

9.8 ZIGZAG TRAMMEL

Start with a standard trammel ZT of length L regarded as a rod initially on the
positive x axis, with Z at (0, 0) and T at (L, 0), as shown in Figure 9.13a. Divide

(a) (b) 
Z

Z

T T
αα

Z

T(c)

Figure 9.13: (a) Standard trammel of length L divided into rods. (b) and (c). Zigzag
trammel of length L, with all rods making equal angles with the x axis.

ZT into a finite number of hinged rods of arbitrary lengths whose sum is L. Now
let the free ends T and Z slide along the respective coordinate axes as indicated in
Figures 9.13b, c, with all rods making equal angles with the x axis. We call this a
zigzag trammel if the number of rods is greater than 1. In the examples shown, the
angle α is allowed to increase from 0 to π/2 so the rightmost rod will stay in the
first quadrant.

For α > 0, an ant starting at T and walking along the zigzag trammel toward
Z decreases its x coordinate monotonically, but its y coordinate is piecewise mono-
tonic, alternately increasing or decreasing as it crosses the hinges.
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9.8. ZIGZAG TRAMMEL 281

A line parallel to the rightmost rod RT is called a zig line, while those parallel
to the rod adjacent to RT are called zag lines. Because all rods make equal angles
with the x axis, they generate a finite set of parallel zig lines and another finite set
of parallel zag lines. Each hinge is the intersection of a zig line and a zag line, as
indicated in Figure 9.14a. The configuration is like a hinged latticework in which
two adjacent rods determine a parallelogram.

A

T

R
Z

(a) (b)Y

Q

S
Z

T

R

Figure 9.14: (a) Parallel zig lines and parallel zag lines through the hinges of a zigzag
trammel. (b) A line through the rightmost rod RT intersects the y axis at A.

In Figure 9.14b, A denotes the point at which a line through the rightmost rod
RT intersects the y axis. By the parallel construction suggested by Figure 9.14a,
it follows that the length of AT is the sum of the lengths of the rods of the zigzag
trammel. Consequently, we have the following property:

Property 1. As a zigzag trammel ZT of length L slides along the axes, a line
segment AT through the rightmost rod RT , from the y axis to T , is a standard
trammel of length L sliding along the same axes, regardless of the number of rods
and their relative sizes.

Applications to folding doors.

Zigzag trammels can be realized physically as folding doors. Examples are those
treated in [63], where the left endpoint Z is kept fixed. The seemingly unexpected
appearances of the same astroid and various ellipses associated with bifold closet
doors treated in [63] are easily explained as consequences of Property 1. In [63]
the floor area swept out by the right panel of a bifold closet door was found using
calculus. That result follows directly from the discussion related to Figures 9.10b
and 9.10c. It is also a special case of (9.12) when b = a = L/2 and θ = π/4. As
we observed earlier, using a one-panel door sliding along two perpendicular tracks
instead of a hinged door results in a saving of 62.5% in the swept floor area. Using
a bifold closet door as is done in [63] with Z fixed saves only an additional 6.25%.
We can do much better if we allow Z to move upward along the vertical axis while
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keeping the hinge on the horizontal track. Then the left panel is a trammel of half
the length that sweeps out one-quarter as much floor space. When the hinge reaches
the vertical axis and then moves upward, the right panel covers the same floor space
already covered by the left panel. The total saving in floor space is now 29/32 of
that swept by a non-folding hinged door, or a whopping 90.63%.

If the two rods joining alternate hinges of a zigzag trammel always have equal
lengths, they form an isosceles triangle whose vertex is at the intermediate hinge.
This configuration occurs when closet doors are divided into two or more hinged
panels that fold or unfold as the door is opened or closed. Equation (9.12) can be
used in particular to calculate the floor area swept by the rightmost panel of an
n-panel door of equal sizes by taking b = L/n and a = L(n − 1)/n. We omit the
details.

A zigzag trammel has other interesting properties. For example, consider the
rod RQ in Figure 9.14b adjacent to the rightmost rod RT . Let S denote the point
where RQ or its extension to Y on the y axis intersects the x axis. Then we have:

Property 2. As a zigzag trammel ZT of length L slides along the axes, the
point S remains on the x axis and SY has constant length L − 2RT , so SY is a
standard trammel sliding along the same axes.

Proof. During the entire motion, TRS is an isosceles triangle with RS = RT ,
so S remains on the x axis. Also SY = Y R− SR = (L−RT )− SR = L− 2RT .

The same analysis applies to each of the rods of a zigzag trammel. A line through
the rod extended to meet the y axis produces a standard mini-trammel whose ends
slide along the same axes. Consequently, each point on such a mini-trammel traces
its own ellipse. It also has its own astroid as an envelope. One of them is shown
by the dashed curve in Figure 9.14b. The next theorem tells how to determine the
length of each mini-trammel.

Theorem 9.4. Consider a zigzag trammel of length L with rods of lengths z1, z2, ..., zn,
labeled from right to left. Then the segment between the x and y axes of the line
through the ith rod is a standard trammel whose length Li is given as follows:
for odd i, (zig lines)

L1 = L, L2k+1 = L− 2(z2 + z4 + · · ·+ z2k), k ≥ 1,

and for even i, (zag lines)

L2k = L− 2(z1 + z3 + · · ·+ z2k−1), k ≥ 1.

An inductive proof can be given, which is omitted. The formulas for L1 and L2

to begin the induction are contained in Properties 1 and 2, respectively.
A knowledge of the length of a mini-trammel determines its corresponding as-

troidal envelope, and also determines the semiaxes of the ellipse traced by a point
on the line through each rod. The semiaxes are the distances from the tracing point
to the endpoints of the corresponding mini-trammel. In particular the semiaxes ak
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and bk of the ellipse traced by the hinge joining rod k with rod k + 1 are given by

ak = L− (z1 + · · ·+ zk), bk = |Lk − ak|,
where Lk is the trammel length determined by Theorem 9.4.

For animations showing zigzag trammels in motion see the web site

www.mamikon.com/Trammel.html.

9.9 FLEXIBLE TRAMMEL

An astroid is the common envelope of a moving standard trammel and a family
of traced ellipses (Figure 9.7). Now we introduce trammels of variable length that
provide a new solution of a classical problem of finding the envelope of a family of
straight lines. In Theorem 9.7 we will show that this is also the envelope of a family
of curves traced by special points on these lines. Sections 9.11 and 9.12 provide
many interesting examples.

Figure 9.15a shows the first quadrant segment of a line with cartesian equation

x

m
+

y

n
= 1. (9.13)

Here m and n are the x and y intercepts of the line. When both intercepts are
nonzero they can be regarded as legs of a right triangle of lengths |m| and |n|
having hypotenuse of length

√
m2 + n2. If m2 + n2 is constant, the line segment

joining the axes will have constant length and we obtain a standard trammel of that
length.

P

m

n

(b) (c) 
m

n

(a)

G(x,y) = 0

x
y

Figure 9.15: (a) Trammel with intercepts m and n. (b) Point (m,n) is on the governing
curve G(x, y) = 0. (c) A point P that divides the trammel into segments of prescribed
ratio λ/μ with λ+ μ = 1 lies on the path given by G(x/λ, y/μ) = 0.

Instead of m2 + n2 being constant, we assume that the intercepts (m,n) satisfy
a more general relation, say

G(x, y) = 0, (9.14)
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where G is a function we call the governor of the trammel. If the intercepts m and
n satisfy G(m,n) = 0 we refer to the portion of the line (9.13) in a given quadrant
as a flexible trammel governed by G. The length of the trammel is equal to that of
the radial segment from the origin to (m,n), where G(m,n) = 0. The segment and
the trammel are the diagonals of a rectangle with opposite vertices at the origin
and at (m,n) as shown in Figure 9.15b. This extends Figure 9.2c for a standard
trammel.

When G(m,n) = m2 + n2 − 1, the trammel has constant length 1. As this
standard trammel slides along the axes, a point P on it traces an ellipse. Now we
seek the path traced by a point P on a flexible trammel as the trammel slides along
the axes. We treat only the simple case when P divides the trammel into two pieces
whose lengths are in constant ratio. It can be realized physically by an elastic string
with a knot on it.

Theorem 9.5. Consider a flexible trammel governed by a function G. A point P
that divides the trammel into two pieces whose lengths are in a ratio λ/μ, where λ
and μ are nonzero constants with λ+ μ = 1, lies on the path given by

G(
x

λ
,
y

μ
) = 0. (9.15)

Proof. Point P has coordinates (λm, μn), and because of (9.14) it lies on the
path given by (9.15).

Definition. The graph of (9.15) is called the trace of P , denoted by τ(λ).

Theorem 9.5 shows how easy it is to determine the trace of P once the governing
function of the trammel is known.

Because λ+μ = 1 the curves τ(λ) form a one-parameter family of curves deter-
mined by the governor G and the choice of λ. The trace τ(λ) is obtained by dilating
the graph of G horizontally by a factor λ and vertically by a factor μ = 1− λ.

If both m and n are positive, the trammel lies in the first quadrant. The restric-
tion λ + μ = 1 keeps P = (λm, μn) in the first quadrant between the ends of the
trammel if both λ and μ are positive. But if λ > 1 then μ = 1− λ is negative and
P lies in the fourth quadrant. Similarly, if μ > 1 then λ = 1− μ is negative and P
lies in the second quadrant.

9.10 TANGENCY OF A FLEXIBLE TRAMMEL AND ITS TRACE

In Section 9.5 we found the point of tangency of a standard trammel and the ellipse
traced by a point on the trammel. Now we do the same for the curve in (9.15)
traced by a point P that divides a flexible trammel into pieces of ratio λ/μ. For
simplicity, assume that the governing equation G(x, y) = 0 in (9.14) can be solved
for y in terms of x, giving

y = g(x). (9.16)

Then the equation of the trace of a point P = (λm, μn) on the trammel is

y = μg(
x

λ
). (9.17)
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The curve in (9.17) has slope
dy

dx
=

μ

λ
g′(

x

λ
)

at each of its points, while the trammel has slope −n/m at each of its points.
Equating the slopes at the point P of intersection we find

− n

m
=

μ

λ

dn

dm
, (9.18)

where dn/dm = g′(m).

Equation (9.18) determines the ratio n/m implicitly in terms of μ, λ, and G,
and we denote by ρ the ratio n/m so defined. The ratio ρ is the tangent of the
critical angle θ that the trammel makes with the x axis when it is tangent to the
trace τ(λ). Consequently, (9.18) gives the following extension of Theorem 9.1:

Theorem 9.6. The trammel is tangent to the trace when its angle of inclination θ
with the x axis satisfies

tan θ = ρ. (9.19)

To show how (9.19) can be used to determine the slope of the trammel when it
is tangent to the trace τ(λ) we consider the following example.

Example 1: G(x, y) = ( x
A )k + ( y

B )k − 1 (kth power ellipse).

The trace in this example is given by

(
x

λA
)k + (

y

μB
)k = 1.

The equation G(m,n) = 0 becomes mkBk + nkAk = AkBk, which yields

dn

dm
= −Bkmk−1

Aknk−1
. (9.20)

Equation (9.18) implies (n/m)k = (B/A)k(μ/λ), and when this is solved for ρ =
n/m we obtain

tan θ = ρ =
B

A
(
μ

λ
)

1
k . (9.21)

When k = 2 and A = B this agrees with the formula obtained earlier in (9.8).

The case k = 1 is also of interest because the governor is a straight line x/A+
y/B = 1 and every trace is also a straight line x/(λA) + y/(μB) = 1. In this case
(9.21) becomes

tan θ =
n

m
=

B

A
(
μ

λ
). (9.22)

The trammel and trace are straight lines that intersect at exactly one point unless
they have the same slope, in which case the trammel and trace coincide. From
(9.22) we see that this happens if and only if μ/λ = An/Bm.
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9.11 ENVELOPE OF A TRAMMEL AND OF ITS FAMILY OF TRACES

As the angle α of inclination of a trammel varies it generates a one-parameter family
of lines that has an envelope ε touching all of them. For a given position of the
trammel select the point of tangency with ε. That point divides the trammel into
pieces having a ratio λ/μ with λ+ μ = 1. Point P = (λm, μn) traces a curve τ(λ)
given by (9.17). The trace cannot cross ε in a neighborhood of P , otherwise the
trammel would cross its envelope at P . Therefore the trace is also tangent to ε at
P . If ε exists we can use (9.18) and (9.13) to determine parametric equations for
it. First, we have

x

m
= λ =

λ

λ+ μ
=

1

1 + μ
λ

,

which in view of (9.18) and (9.13) gives us the pair of equations

x

m
=

1

1− n
m

dm
dn

,
y

n
= 1− x

m
. (9.23)

This gives us the following:

Theorem 9.7. The envelope of a moving flexible trammel is also the envelope of
the family of traces of the trammel, as described by (9.23).

The second equation in (9.23) can be written as

y

n
=

1

1− m
n

dn
dm

. (9.24)

Because m and n satisfy the governing condition G(m,n) = 0, relations (9.23)
and (9.24) serve as parametric equations for the envelope ε in terms of one of the
parameters m or n.

In general the derivatives dm/dn and dn/dm can be obtained by differentiating
the implicit equation G(m,n) = 0, as is done for the following examples.

Example 1: G(x, y) = ( x
A )k + ( y

B )k − 1 (kth power ellipse).

In this case we use (9.20) for dn/dm, and the parametric equations (9.23) and
(9.24) yield x/A = (m/A)3, y/B = (n/B)3. Eliminating the parameters m,n we
find that the envelope of the family of kth power ellipses is a generalized astroid
given by

(
x

A
)

k
k+1 + (

y

B
)

k
k+1 = 1. (9.25)

Figure 9.16 shows some special cases. The dashed line in Figure 9.16a shows the
case k = 1 with A = 2, B = 3. In this case the envelope ε is the parabola described
by √

x/2 +
√
y/3 = 1.

The symmetric case A = B (Figure 9.16d) yields a known parabolic envelope [70,
p. 76]. Figure 9.16b shows the case k = 2 (an ordinary ellipse with A = 2, B = 3)
whose envelope is an asymmetric astroid.
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k=1 k=2 k=3
k=1
symmetric

0.7 0.7 0.7 
(a) (b) (c) (d) 

ε
ε ε

ε
τ τ τ

G G 

G

G

Figure 9.16: Special cases of Example 1 showing the governor G (dashed), and the
trammel tangent to the envelope ε. In (a)-(c), the trace curve τ(0.7) is shown. In (d) the
governor is x+ y = 1, shown in the first quadrant. When the governor is in the second or
fourth quadrant, the parabolic envelope continues in the first quadrant with the line y = x
as its axis of symmetry.

Figures 9.16b-c show the trammel tangent to ε, and to the trace curve τ(0.7).

Example 2: G(x, y) = y − xk (kth power function).

In this case the trace is another kth power function given by

y = μ(
x

λ
)k.

Figure 9.17a shows the case k = 1, in which the governor is the line y = x, the
trace curve is the line y = μx/λ, which is never tangent to the trammel, and there
is no envelope.

(a) k = 1 (b)   k = 2 (c)   k = 3 (d)

τ τ τ

ε ε ε,τ

G G G G

Figure 9.17: Special cases of Example 2 with positive k, and λ = 0.3 in (a)-(c).

If k �= 1, the envelope is yet another kth power function given by

y =
(k−1

k )k

1− k
xk.

Moreover, in this case the envelope touches all the trace curves only at the ori-
gin. The line through the trammel is always tangent to the envelope in the fourth
quadrant.
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Figure 9.17d shows a special feature that holds for any exponent k. The trammel
and the trace have the same slope at their point of intersection when (9.19) is
satisfied. If n = mk then dn/dm = kmk−1 = kn/m, and (9.19) implies

n

m
(
μk

λ
+ 1) = 0. (9.26)

Relation (9.26) is satisfied if n/m=0 (when the trammel is horizontal) but (9.26)
also holds for a nonhorizontal trammel when the point of subdivision (λm, μn) on
the trammel satisifes λ/μ = −k, or λ = k/(k − 1), k �= 1. For this choice of λ, the
trace τ(λ) coincides with the envelope, and a line through the trammel is tangent
to both in the fourth quadrant as shown by the example in Figure 9.17d.

Figure 9.18 shows special cases of Example 2 when the exponent k is negative.
In Figure 9.18a, b, c we have k = −1, k = −2, k = −3, respectively. The exceptional
case (9.26) is shown in Figure 9.18d. For the special choice of ratio λ/μ = −k, the
trace τ(λ) coincides with the envelope and the trammel is tangent to both in the
first quadrant as indicated in Figure 9.18d.

(a) k = −  1 (b)   k = −  2 (c)   k = −  3

τ
τ τ

ε ε ε ε,τ
GGGG

(d)

Figure 9.18: Special cases of Example 2 with negative k, and λ = 0.3 in (a)-(c).

The governing curve, each trace, and the envelope in Figure 9.18a are rectan-
gular hyperbolas with the axes as asymptotes. The next example treats kth power
governing hyperbolas written in standard form.

Example 3: G(x, y) = (x/A)k − (y/B)k − 1 (kth power hyperbola, k �= 0).

By Theorem 9.5 the trace is also a generalized kth power hyperbola given by

(x/λA)k − (y/μB)k = 1.

If k �= −1, the envelope has cartesian equation resembling that in (9.25) with a
difference instead of a sum:

(
x

A
)

k
k+1 − (

y

B
)

k
k+1 = 1.

9.12 APPLICATION: GRAPHIC CONSTRUCTION OF ENVELOPES
AND GOVERNORS AS A CLASSROOM ACTIVITY

The foregoing examples suggest a simple and engaging educational activity that can
be performed on graph paper. It reveals the qualitative shape of the envelope of a
family of tangent lines without the use of equations for the envelope.

ApostolGeoChapter 9_v2.indd   22ApostolGeoChapter 9_v2.indd   22 10/3/12   2:33 PM10/3/12   2:33 PM



9.12. CLASSROOM ACTIVITIES 289

Governor:  y   =   −x/ tan x 

-1 

π0 

Governor: circle 

Deltoid 

Cycloid 

(a) Deltoid as envelope (b) Cycloid as envelope 

y 

x 

Quadratrix of Hippias 

π/2 

Figure 9.19: (a) A circular governor tangent to the y axis produces a deltoid as envelope.
(b) Cycloid as envelope for the quadratrix of Hippias as governor. Different branches of
the quadratrix produce copies of the cycloid.

Start with a straight line as governor G, as shown by the dashed line in Figure
9.16a. Choose a point (m,n) on G, and drop perpendiculars to the coordinate axes
to obtain the projections (m, 0) and (0, n) on the axes. The line drawn through
the projected points has intercepts m and n and is tangent to the corresponding
envelope ε. By choosing several points onG and repeating this process, the positions
of the tangent lines gradually reveal the shape of the envelope.

For a more general governor G the corresponding envelope ε can be constructed
in exactly the same manner. The following examples are of special interest.
1. If G is a straight line, ε is a parabola (Figures 9.16a and d).
2. If G is a circle centered at the origin (as in Figure 9.16b), ε is an astroid.
3. If G is a circle tangent to the y axis with center on the x axis as shown in Figure
9.19a, the envelope is a deltoid (see Section 2.4).
4. If G is the quadratrix of Hippias, known since 430 B.C., (see [70, p. 204]), ε is a
cycloid (Figure 9.19b). This connection between the quadratrix of Hippias and the
cycloid is completely unexpected.

We can also start with a prescribed curve as envelope and determine the governor
leading to it by simply reversing the steps described above, as illustrated in Figures
9.20 and 9.21 for the following examples.
5. When the envelope ε is an ellipse centered at the origin as shown in Figure 9.20a,
the governor is a cross curve (see [70, p. 203]).
6. When the envelope ε is a hyperbola centered at the origin as shown in Figure
9.20b, the governor is a bullet nose curve (see [70, p. 203]).
7. When the envelope ε is a single point, the governor is a rectangular hyperbola
with asymptotes intersecting at that point (Figure 9.20c).
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(b) Bullet nose curve as governor(a) Cross curve as governor (c) Single point as envelope

standard
hyperbola

rectangular
hyperbola

ellipse

ε

Cross curve Bullet nose
curve

Figure 9.20: (a) An ellipse as envelope arising from a cross curve. (b) A hyperbola as
envelope arising from a bullet nose curve. (c) A single point as envelope of a shifted
hyperbola.

8. When the envelope ε is a circle tangent to the coordinate axes as in Figure 9.21a,
the governor is a curve that resembles a bicorn or “Napoleon’s hat.”
9. When the envelope ε is the cardioid shown in Figure 9.21b, the governor is a
curve whose cartesian equation is y = (9x2 − 27)/(27− x2).

9

(a) (b) 

Governor closely r esembles 
a Bicorn, or Napoleon's Hat

Governor: 

y  =
9x − 27
27 − x

2

2

Cardioid

Circle

Figure 9.21: In (a) the envelope is a circle. In (b) the envelope is a cardioid.

Also, if the trammel is realized by an elastic string tangent to the envelope, a
knot at its midpoint will trace a curve similar to the governor. A knot elsewhere
will trace a dilated copy of the governor (Theorem 9.5).
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9.13 REMARKS CONCERNING HOLDITCH’S THEOREM

In 1858 the Reverend Hamnet Holditch, president of Caius College in Cambridge,
published a one-page note [49] announcing the following surprising result, which
became known as Holditch’s theorem:

If a chord of a closed plane curve be divided into two parts of constant lengths a
and b, the difference between the areas bounded by the closed curve and by the locus
of the dividing point, will be πab.

An example illustrating Holditch’s theorem is shown in Figure 9.22. The outer
curve C is the given closed curve, and chord AB is divided by point D. The inner
curve E is the envelope of the moving chord AB, which is always tangent to E.
The locus of the division points D is the trace T , shown intermediate to E and C.

aclosed curve  C

envelope E

D

b

trace T 
A

B

Figure 9.22: Illustrating Holditch’s theorem. The chord AB of length a + b moves once
around the interior of the closed curve C. The trace T is the locus of the division points
D. The shaded region between T and C has area πab.

Holditch’s theorem states that the area of the region between C and T is πab. This
is surprising because it depends only on the product of the lengths a and b and not
on the size or shape of curve C.

Holditch’s original note ignores several assumptions that are needed to validate
his proof for a general closed curve C. His argument implicitly assumes that C is
convex (his drawing shows C as a circle) and that the chord can actually navigate
around it in such a way that the dividing point traces out another closed curve
inside the curve. A discussion of these unstated assumptions has been given in
several papers, notably [30] and [34], which together with [32] also provide various
extensions of Holditch’s theorem.

We shall use sweeping tangents to derive a bipartite sweeping formula (9.29) that
not only implies Holditch’s theorem but extends the generalization in [32] as well.
In our general treatment a tangent segment of variable length a + b moves along a
space curve E, and its endpoints A and B trace space curves that are not necessarily
closed. Our formula can be used to calculate areas of classical regions, such as the
elliptical sector in Theorem 9.2, the region bounded by a cardioid, or the region
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bounded by the limaçon of Pascal. Although our general formula extends Holditch’s
theorem, we have not found any interesting applications to areas of classical curves
that cannot be treated more easily by standard calculus integration.

A bipartite sweeping formula.

Start with a space curve E that will play the role of the envelope of the chords
in Holditch’s treatment. Imagine a moving coordinate axis with its origin initially
tangent to E. The coordinate axis consists of two infinite rays, one positive and one
negative, joined at the origin. If we allow the axis to move tangent to E, each ray
sweeps out one sheet of a developable surface. The two sheets meet along E, and
their union is the tangent developable surface of E. The curve E is called the edge
of regression of the surface (see [67; p. 71]). Now consider the developable surface
swept by a tangent segment of variable length a+ b moving along E, requiring only
that a and b be proportional. During this motion, the two endpoints A and B of the
tangent segment trace portions of two curves (instead of Holditch’s closed curve),
one on each sheet of the developable surface. Formula (9.29) relates the areas of
the regions swept by the two pieces of lengths a and b, hence the name bipartite
formula. The formula is also meaningful if the dividing point D is not between the
two endpoints, provided it lies on the line determined by the moving tangent. We
emphasize again that our treatment does not require that the endpoints A and B
move along closed curves.

Let ϕ denote the angle that the positive axis sweeps out as it moves from a fixed
tangent line to a general position. Consider three points A, B, D on the same ray
of the axis with respective coordinates α, β, δ that vary continuously with ϕ. When
0 < β < δ < α, D lies between B and A and divides BA into segments of lengths
(δ − β) and (α− δ), as shown in Figure 9.23.

B D
A

ϕ β
δ

α

fixed tangent 

sweeping
tangent

Figure 9.23: When 0 < β < δ < α, D divides BA into segments of lengths (δ − β) and
(α− δ).

We consider the integrals

HA =
1

2

∫ θ

0

(α2 − δ2) dϕ, and HB =
1

2

∫ θ

0

(δ2 − β2) dϕ. (9.27)

These integrals are meaningful for any configuration of points A, B, D, but
when D lies between B and A as in Figure 9.23, HA represents the area of a region
swept by segment DA between the curves traced by α and δ, and HB represents the
area swept by segment BD between the curves traced by δ and β.
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Now introduce the functions

a(ϕ) = α − δ, and b(ϕ) = δ − β,

which can be positive or negative. In the configuration shown in Figure 9.23, both
a(ϕ) and b(ϕ) are positive because they are the lengths of segments DA and BD,
respectively.

In general, α = a(ϕ)+ δ, β = δ− b(ϕ), and the integrals for HA and HB become

HA =
1

2

∫ θ

0

((a(ϕ) + δ)2 − δ2) dϕ =
1

2

∫ θ

0

a2(ϕ)dϕ+

∫ θ

0

a(ϕ)δdϕ,

HB =
1

2

∫ θ

0

(δ2 − (δ − b(ϕ))2)dϕ =
−1
2

∫ θ

0

b2(ϕ)dϕ+

∫ θ

0

b(ϕ)δdϕ.

At this point we add the restriction that a(ϕ) and b(ϕ) are proportional. Specif-
ically, assume that

qa(ϕ) = pb(ϕ), (9.28)

where p and q are real constants with p + q = 1. In Figure 9.23, this means
that D divides BA into two pieces whose lengths have constant ratio. The linear
combination qHA − pHB eliminates the integrals involving δ and gives us

qHA − pHB =
1

2

∫ θ

0

(qa2(ϕ) + pb2(ϕ)) dϕ.

But qa2(ϕ) + pb2(ϕ) = a(ϕ)pb(ϕ) + b(ϕ)qa(ϕ) = a(ϕ)b(ϕ) by (9.28), and we find
the bipartite sweeping formula:

qHA − pHB =
1

2

∫ θ

0

a(ϕ)b(ϕ) dϕ. (9.29)

This is a property of the integrals in (9.27). When properly interpreted, it
provides a relation between areas, as shown by examples below.

When A and B move once around the same plane closed curve, (9.29) reduces
to a result of Chakerian and Goodey [32].

Holditch’s theorem as a special case.

To show that Holditch’s theorem is a consequence of (9.29), take a(ϕ) = a and
b(ϕ) = b, where a and b are constant subject to the proportionality relation qa = pb,
where p+ q = 1. Then (9.29) becomes

qHA − pHB =
θ

2
ab. (9.30)

Now assume that A and B move once around the same closed curve C. Then
θ = 2π, and (9.30) becomes

qHA − pHB = πab. (9.31)
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In this case, the integral HA = 1
2

∫ 2π

0
(α2−δ2) dϕ is positive and represents the area

of the ring swept by AD, which lies between C and the curve traced by D. On the
other hand, B traces the same closed curve as A so we have

HB =
1

2

∫ 2π

0

(δ2 − β2) dϕ =
1

2

∫ 2π

0

(δ2 − α2) dϕ = −HA.

Therefore qHA − pHB = (q + p)HA = HA because q + p = 1, so (9.31) yields
Holditch’s theorem:

HA = πab.

Alternative form of the bipartite formula.

We can express (9.29) in another form by introducing

c(ϕ) = a(ϕ) + b(ϕ) = α− β,

which, for the configuration in Figure 9.23, represents the length of segment BA.
The relation p+ q = 1, together with (9.28), gives us

b(ϕ) = pb(ϕ) + qb(ϕ) = q(a(ϕ) + b(ϕ)) = qc(ϕ),

and
a(ϕ) = pa(ϕ) + qa(ϕ) = p(a(ϕ) + b(ϕ)) = pc(ϕ),

hence
a(ϕ)b(ϕ) = pq c2(ϕ).

Therefore the bipartite sweeping formula (9.29) can be written in the alternative
form

qHA − pHB =
pq

2

∫ θ

0

c2(ϕ) dϕ. (9.32)

NOTES ON CHAPTER 9

Except for Section 9.13 on Holditch’s theorem, the material in this chapter
originally appeared in [23]. The results in Section 9.13 have not been previously
published.

ApostolGeoChapter 9_v2.indd   28ApostolGeoChapter 9_v2.indd   28 10/3/12   2:33 PM10/3/12   2:33 PM



Chapter 10

ISOPERIMETRIC AND
ISOPARAMETRIC
PROBLEMS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

Four pairs of isoparametric plane regions (having equal areas and equal perime-
ters), are shown. Each pair is an example of special dissections, in which a chord
bisects the first region, and one of the two pieces is flipped to produce a region
isoparametric to the first. In these examples, the boundary of the first region is
converted onto the boundary of the second.

oval and heartregular pentagon and hexagon

isosceles triangle and parallelogram parallelogram and kite

A dissection that converts boundaries onto one another is called complete.
Find a complete dissection, without flipping, that converts the isosceles triangle

below onto the isoparametric isosceles trapezoid shown. Do the same for the oval
and heart shapes.

295
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10.1. INTRODUCTION 297

01
Traditional isoperimetric problems ask for the region of maximal area

among all plane regions having equal perimeters. Part 1 of this chapter deals
instead with plane regions that have equal perimeters and equal areas. We
call such regions isoparametric and introduce the isoparametric problem: find
incongruent isoparametric regions of specified shapes. Surprisingly, incredi-
bly many solutions exist, and the problem opens a broad new field of research.
Simple examples include a square and two different circular sectors, and a rect-
angle and two different isosceles triangles. The general problem is analyzed
with the help of the contour ratio, a replacement of the classical isoperimetric
quotient. Two contours can be scaled to become isoparametric if and only
if they have the same contour ratio. The problem becomes more interesting
and more difficult when it is extended to rings, that is, regions between two
similar simple closed curves. For example, although a square and a circular
disk are never isoparametric, a square ring and a circular ring can be isopara-
metric, unless the hole in the circular ring is too small to make a significant
contribution to the total perimeter and area.

Part 2 introduces a new development in classical dissection problems: com-

plete dissections that convert regions and their boundaries into one another.

This requires isoparametric regions as introduced in Part 1. To the best of

our knowledge, complete dissections have not been previously treated.

PART 1: ISOPARAMETRIC REGIONS

10.1 INTRODUCTION

Two incongruent solids with remarkable properties are shown in Figure 10.1. One
is a slice of a solid hemispherical shell with inner radius r and outer radius R cut
by a plane parallel to the equator and at distance h < r from the equator. The
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298 Chapter 10. ISOPERIMETRIC AND ISOPARAMETRIC PROBLEMS

other is a cylindrical shell with the same radii and altitude h. The surface of each
solid consists of four components: an upper circular ring, a lower circular ring, an
outer lateral surface, and an inner lateral surface. The two solids share the following
properties:

R r
h

R

r

Figure 10.1: Incongruent solids sharing the properties (a) through (e).

(a) The solids have equal volumes.

(b) The solids have equal total surface area.

(c) Every plane parallel to the equator cuts both solids in cross sections of equal
area.

(d) The two inner lateral surface areas are equal.

(e) The two outer lateral surface areas are equal.
These two solids were introduced in Chapter 5, where it was shown that the prop-

erties (a)–(e) are shared by an entire family of incongruent solids, each of which has
polygonal rings as cross sections, rings formed by similar polygons circumscribing
the inner and outer circular cross sections of a spherical shell. These solids are
part of a more general family with polygonal rings as cross sections (described in
Section 10.8) that is even more remarkable because it satisfies the five properties
and a sixth property not shared by the solids in Figure 10.1:

(f) Every plane parallel to the equator cuts both solids in cross-sectional rings
whose inner perimeters are equal and whose outer perimeters are equal.

The last property implies that the two cross-sectional rings also have the same
total perimeter. This observation motivated the present chapter, which is concerned
with plane regions having equal areas and equal perimeters. Because two global
parameters (area and perimeter) are to be equal, we call such regions isoparametric.
The first problem we posed was

How can we construct incongruent isoparametric plane regions?

With no further restrictions on the regions, it is easy to produce examples at
will, as shown by the regions in Figure 10.2. A chord divides each region into two
pieces. One piece is flipped to produce an incongruent isoparametric region. It is
clear that infinitely many such regions can be produced in this way by cutting and
flipping a piece from any region, unless it is a circular disk, in which case flipping
one of the pieces results in a congruent disk.
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oval and heartregular pentagon and hexagon

isosceles triangle and parallelogram parallelogram and kite

Figure 10.2: Incongruent isoparametric plane regions formed by cutting and flipping.

Traditional isoperimetric problems compare different plane regions having equal
perimeters and ask for the region of maximal area. It is known [35], [61] that among
all regions with a given perimeter, the circle encloses the largest area. This follows
from the isoperimetric inequality,

p2

4s
≥ π, (10.1)

which relates the perimeter p and area s of a planar region bounded by a simple
closed curve. Equality holds in (10.1) only for the circle.

Isoperimetric problems have been a source of important mathematical ideas and
techniques since classical antiquity. A result arising from mythology is Dido’s prob-
lem: in the half-plane bounded by a line, find a curvilinear arc of prescribed length
with its extremities on the line and enclosing the maximum area. The solution, a
semicircle whose diameter is on the given line, is obtained by reflecting the curve
in the line and invoking the isoperimetric property of the circle. Archimedes treats
a three-dimensional analog in Proposition 9 of his Sphere and Cylinder II, which
states that of all spherical segments having equal spherical surface area, the hemi-
sphere has the greatest volume. Today, isoperimetric problems and their extensions
are alive and well. They continue to nourish mathematical imagination, as evi-
denced by a recent proof of the double bubble conjecture [50]. Interesting historical
perspective on isoperimetric problems is given in [35], which also describes their
relation to a host of other maximum-minimum problems dealt with by a method
called the calculus of variations.

This chapter treats a different type of problem: find incongruent plane regions
that have equal perimeters and equal areas. Hence the new name: isoparametric
problem. The problem becomes more interesting, and more difficult, if we seek
incongruent isoparametric regions of specified shapes. It cannot be solved if one of
the regions is a circular disk because of the isoperimetric inequality. Also, it cannot
be solved for two regular polygons with different numbers of sides (see Section 10.2).

The authors were pleasantly surprised to discover numerous cases where it can
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300 Chapter 10. ISOPERIMETRIC AND ISOPARAMETRIC PROBLEMS

be solved. Figure 10.3a shows three incongruent isoparametric regions: two circu-
lar sectors and a rectangle, each with area θ and perimeter 2 + 2θ. Because θ is
arbitrary, this provides an infinite family of such triples. When θ = 1 the rectangle
is a square and the two sectors are congruent. Figure 10.3b shows three more ex-
amples: two isosceles triangles and a rectangle, each with area 12 and perimeter 16.

(a)  T wo circular sec tors and a rect angle (b)  T wo isosceles tr iangles and a re ctangle 

2/ 
2 

2 θ

1 

1 

2 

2 

3 

2 

1+     13 
2 

2(    13 −1) 

Figure 10.3: Examples of incongruent isoparametric regions.

Such examples show that the general problem of finding incongruent isoparamet-
ric regions of specified shapes opens a door to many possibilities worth exploring.
Section 10.3 gives a systematic treatment. Section 10.4 treats the same type of
problem for rings bounded by two similar closed curves. Introducing “holes” makes
the problem more interesting and allows more possibilities. For example, Figure
10.4a shows three rings formed from the sectors and rectangle in Figure 10.3a. The

(a) Sectorial rings and rectangular rings (b) Circular ring and square ring

2

2λ
2/

λ λ

2θ

2λ
λ

2

1

1

2
1

3π
4

−1

3π
4 +1

Figure 10.4: Examples of incongruent isoparametric rings.

holes are obtained by shrinking each figure by the same size factor λ (< 1). For any
size factor λ, each of the rings has area (1−λ2)θ and total perimeter (1+λ)(2+ θ),

θ

θ
θ

θ

θ

θ
θ

θ
θ

θ
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10.2. CONTOUR RATIOS 301

so they are isoparametric. In Figure 10.4b a circular ring and a square ring have
the same area 3π and the same total perimeter 6π. For the circular ring the size
factor λ (ratio of inner to outer radius) is 1/2. But if λ < 1/9, it turns out that
there is no isoparametric square ring. Sections 10.5 and 10.6 explain why there is
a restriction on λ in Figure 10.4b but not in Figure 10.4a. Section 10.7 discusses
isoparametric rings that have property (f) mentioned earlier.

10.2 CONTOUR RATIOS

In this chapter, a contour is a plane region that has associated with it a perimeter p
and an area s. For a given region, the ratio Q = 4πs/p2 is called the isoperimetric
quotient. The isoperimetric inequality states that Q ≤ 1 for regions bounded by
simple closed curves, with Q = 1 only for the circle. Some properties of Q are given
in [52]. For our purposes, it is more useful to study the quotient

κ =
p2

4s
, (10.2)

which we call the contour ratio. It has the pleasant feature that κ = π for a circle
and κ = 4 for a square. Isoparametric contours have the same contour ratio. A
regular n-gon has contour ratio κ = n tan(π/n), a decreasing function of n that
approaches π as n → ∞. That is why regular polygons with different numbers of
sides cannot be isoparametric.

For all contours with s = 1, the contour ratio is the square of the semiperimeter.
Qualitatively, the contour ratio indicates the dominance of the semiperimeter over
the square root of the area. Similar contours have the same contour ratio because
the scaling factor cancels in (10.2).

Figure 10.5 shows various shapes arranged by contour ratios. The size of a region
plays no role. All circles are located at π, and all squares at 4.

Figure 10.5 also provides a spectrum of contour ratios for families of shapes.
Regular polygons serve as discrete bench marks. For example, an equilateral triangle
has contour ratio 3

√
3 = 5.1961 .... All other triangles have larger contour ratios,

so their images are distributed continuously to the right of the equilateral triangle.
The square, another bench mark, has the smallest contour ratio of all quadrilaterals.
More generally, for each n the images of all n-gons lie to the right of the regular
n-gon, which has the smallest contour ratio among all n-gons.

An isosceles right triangle is also a bench mark. Its contour ratio is 3 + 2
√
2 =

5.8284..., which is the smallest κ that occurs among all right triangles. In particular,
any right triangle with integer sides (a Pythagorean triangle) has a larger κ. The
Pythagorean 3 :4 :5 triangle has κ = 6, and the Pythagorean 119 :120 :169 triangle,
which is nearly isosceles, has κ = 5.8285.... We offer as a challenge to the reader
to show that Pythagorean right triangles exist with κ arbitrarily close to 3 + 2

√
2;

thus, no Pythagorean triangle exists with smallest κ.
On the other hand, two regions can have the same contour ratio even though

their shapes are quite different. In Figure 10.3a the rectangle has a different shape
than the two sectors, but each has area θ and perimeter 2θ + 2, so their contour
ratios are equal.
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Gold

2:1

3 4 5 6 7 8 9 10 11 12
π

9:40:41
1:71:65:12:13

3:4:5

Figure 10.5: A spectrum of contour ratios of various shapes. Relative sizes are irrelevant.

The pentagram in Figure 10.5 has contour ratio 10
√

3− φ = 11.7557..., where
φ = (

√
5 + 1)/2 is the golden ratio. A special long thin rectangle of some base

b ≈ 9.6521 and height 1 has the same contour ratio, even though its shape has no
resemblance to a pentagram. Although the perimeter and area of the rectangle are
not equal to those of the pentagram, there is a similar rectangle with exactly the
same area and the same perimeter as the pentagram, as revealed by the following
theorem.

Theorem 10.1. (Isoparametric Contour Theorem) Two contours can be scaled to
become isoparametric if and only if they have the same contour ratio.

Proof. If two contours can be scaled to become isoparametric, then the scaled
contours have the same contour ratio, hence so do the original contours because κ
is invariant under scaling. Conversely, assume that contours 1 and 2 have equal
contour ratios, p21/ (4s1) = p22/ (4s2) .Then s2/s1 = (p2/p1)

2
. If we scale contour 1

by the scaling factor t = p2/p1 we obtain a similar contour with perimeter tp1 = p2
and area t2s1 = s2. This scaled copy of contour 1 is isoparametric to contour 2. In
the same way, if we scale contour 2 by the scaling factor p1/p2 the scaled copy will
be isoparametric to contour 1.

In terms of the traditional isoperimetric quotient, Theorem 10.1 states that two
regions with the same isoperimetric quotient can be scaled to have equal perimeters
and equal areas.

We call two contours parametrically similar if they have the same contour ra-
tio. Isoparametric contours are always parametrically similar, whereas parametri-
cally similar contours can be scaled to become isoparametric. Stated another way,
isoparametric contours scaled differently are parametrically similar. A pentagram
and the special rectangle of base b ≈ 9.6521 and altitude 1 are parametrically similar
but not isoparametric.

For later reference, we find the contour ratios of some specific shapes, with some
simple consequences.

Example 1 (Polygons circumscribing a circle). Consider a polygon with
perimeter p and area s that circumscribes a circle of radius r . The polygon need
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not be regular. Then s = rp/2, so the contour ratio of the polygon is

κpoly =
p2

4s
=

p

2r
. (10.3)

This is the ratio of perimeter to diameter of the inscribed circle (just as π is the
ratio of the circumference of a circle to its diameter). For polygons with n sides, the
minimum value of κpoly occurs when p is minimal, which means when the polygon
is regular. In this case κ = n tan(π/n), a bench mark for all n-gons.

The perimeter and area of a circumscribing polygon can, in turn, be calculated
in terms of the contour ratio. Using (10.3) we find that

p = 2rκpoly, s = r2κpoly. (10.4)

These generalize the classical formulas p = 2rπ and s = r2π for the circumference
and area of the circumscribed circle. From the formulas in (10.4) we conclude:

Polygons with equal contour ratios that circumscribe the same circle are isopara-
metric. Polygons with equal perimeters that circumscribe the same circle are isopara-
metric. Polygons with equal areas circumscribing the same circle are isoparametric.

Figure 10.6 shows an equilateral triangle and a rhombus that circumscribe the
same unit circle. Each has perimeter 6

√
3 and area 3

√
3 . A circle can be circum-

scribed by a regular n-gon and by a regular m-gon. If m �= n, the regular polygons
necessarily have different perimeters, different areas, and different contour ratios.
But an n-gon can be isoparametric to an m-gon if the one with the larger number
of sides is not regular, as illustrated by the example in Figure 10.6.

1 1

2   3

3   3
2

Figure 10.6: An equilateral triangle and an isoparametric rhombus circumscribing the
same circle.

Polygons that circumscribe circles have a number of remarkable properties, some
of which are alluded to in Example 1. For a more comprehensive list of such
properties see Chapter 4.

Example 2 (Rectangle). A rectangle of base b and altitude a has area ab and
perimeter 2(a+ b), so its contour ratio is

κ
rect =

(a+ b)2

ab
= 2 +

a

b
+

b

a
= 2 + γ +

1

γ
, (10.5)
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where γ is the ratio of the two edges. The minimum occurs when γ = 1, which
gives a square with κ = 4, a bench mark for all rectangles.

From (10.5) we find that two rectangles with edge ratios γ1 and γ2 have the
same contour ratio if and only if γ1 = γ2 or γ1γ2 = 1. In both cases the rectangles
are similar. Therefore, dissimilar rectangles cannot be isoparametric.

Example 3 (Circular sector). A circular sector of unit radius subtending an
angle of 2θ radians has area θ and perimeter 2 + 2θ. Therefore its contour ratio is

κsect =
(2 + 2θ)2

4θ
= 2 + θ +

1

θ
. (10.6)

It is both surprising and remarkable that this has the same form as (10.5), with
γ replaced by θ. As illustrated in Figure 10.3a, each sector is isoparametric to a
rectangle. Again, the minimum is κ = 4, the contour ratio of a square, and it occurs
when θ = 1. A circular sector subtending an angle of 2 radians appears as a bench
mark in Figure 10.5. Sectors subtending angles greater than or less than 2 radians
have contour ratio κ > 4.

Example 4 (Isosceles triangle). An isosceles triangle with equal legs d and
vertex angle 2θ has area s = d2sin θ cos θ and perimeter p = 2d + 2d sin θ, so its
contour ratio is

κisos =
4d2(1 + sin θ)2

4d2sin θ cos θ
=

1

cos θ
(2 + sin θ +

1

sin θ
). (10.7)

As expected, the right-hand side has its minimum value when θ = π/6, giving
κ = 3

√
3 for an equilateral triangle, a bench mark for all isosceles triangles.

10.3 ISOPARAMETRIC CONTOURS OF DIFFERENT SHAPES

This section solves some special cases of the following type of problem:
Isoparametric contour problem. Given a contour of specified shape (such as

a rectangle), under what conditions can we find an isoparametric contour of another
specified shape, such as an isosceles triangle?

A necessary condition that the shapes be isoparametric is that they have the
same contour ratio. If the contour ratios are equal the shapes are parametrically
similar, and they can be scaled to become isoparametric.

Example 5 (Square, pentagon, and hexagon). Given a square, whose con-
tour ratio is 4, we wish to find an isoparametric pentagon, which necessarily has
contour ratio 4. A general pentagon involves many parameters (such as angles and
lengths of edges). We can restrict some of them and still satisfy the requirement
that the pentagon should have contour ratio 4. It is easier to find a pentagon that
circumscribes the same circle as the given square and has the same perimeter. (A
regular pentagon will not do because it has contour ratio smaller than 4.) Figure
10.7a shows an example that works. A circle of radius 6 is circumscribed by a square
of side-length 12. Two Pythagorean 3:4:5 triangles are cut off at two corners of the
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square by tangents to the circle and flipped to form two edges of a circumscribing
pentagon. Because the square and pentagon have equal areas, they are isoparamet-
ric. In fact, the circumscribing pentagon has two edges of length 10, two of length
8, and one of length 12, so its perimeter is 48, the same as that of the square. Both
the square and pentagon have area 144. If the other two corners of the square are
cut off in a similar manner, we find an example of a circumscribing hexagon, shown
in Figure 10.7b, that is isoparametric to both the square and pentagon.

2 4 

3

5

4

6 6

2 4 

3

5

4

(a) Isopara metric squa re and pentagon (b) Isoparam etric squar e and hexagon 

Figure 10.7: Isoparametric square, pentagon, and hexagon circumscribing the same circle.

Example 6 (General contour and rectangle). Assume that we are given a
general contour with contour ratio κ, and that we seek an isoparametric rectangle.
If κ < 4 there is no rectangle isoparametric to the given contour because κ ≥ 4 for
every rectangle. So for this problem, κ ≥ 4 is a constraint on the general contour.
A necessary condition that they be isoparametric is that κrect = κ, and from (10.5)
we find that γ2 + (2 − κ)γ + 1 = 0, where γ is the side ratio of the rectangle. For
κ ≥ 4 the quadratic equation for γ has positive roots given by

γ =
1

2
(κ− 2)± 1

2

√
κ(κ− 4) =

1

4
(
√
κ ±√κ− 4)2. (10.8)

The product of the roots is 1, so the roots are reciprocals. If κ = 4, then γ = 1
and the rectangle is a square. If κ > 4 there are two distinct roots, γ and 1/γ ,
but geometrically they are obtained by interchanging the base and altitude of the
same rectangle. The rectangle is parametrically similar to the given contour. By
Theorem 10.1 the latter can be scaled to become isoparametric to the former.

There is an equivalent way to treat this problem. Suppose that the rectangle
has base b and altitude a, and that the given contour has area s and perimeter p.
There is no loss of generality if we take p = 2, which makes κ = 1/s. Equating
perimeters and areas we find a+ b = 1 and ab = a(1− a) = s = 1/κ, so

a(1− a) =
1

κ
, (10.9)

a quadratic in a with two roots, (1±√
1− 4/κ)/2, whose sum is 1. The constraint
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κ ≥ 4 ensures that both roots are positive. If we take a ≤ b, then a is given by

a =
1

2
− 1

2

√
1− 4

κ
=

1

2
− 1

2

√
1− 4s. (10.10)

and b = 1− a. We will use this relation in Example 9.

Example 7 (General contour and circular sector). We take a contour
with contour ratio κ and try to find an isoparametric circular sector of unit radius.
Denote the central angle of the sector, measured in radians, by 2θ. If κ < 4 there
is no sector isoparametric to the given contour because κsect ≥ 4 for every sector.
Therefore, as in Example 6, κ ≥ 4 is a constraint on the general contour. A necessary
condition that the two be isoparametric is that κsect = κ, hence by (10.6) we find
that θ2 + (2− κ)θ + 1 = 0, the same quadratic equation satisfied by γ in Example
6, whose roots are given by (10.8). We know from Example 3 that the sector is
isoparametric to a rectangle with edges 1 and θ, so this problem is equivalent to
Example 6. For κ ≥ 4, the quadratic has two positive roots that are reciprocals. If
κ = 4, then θ = 1 and there is one circular sector of unit radius subtending an angle
of 2 radians. It is isoparametric to the unit square and can be scaled to become
isoparametric to any contour with κ = 4.

If κ > 4, there are two dissimilar circular sectors of unit radius with the same
κ; one subtends an angle of 2θ radians, the other an angle of 2/θ radians. The
two sectors are parametrically similar, but (except for the case θ = 1) they are not
isoparametric. But if we scale the second sector by a factor θ we obtain a similar
sector that is isoparametric to the first sector and also to any contour of contour
ratio κ.

In particular, if the contour is a rectangle with edges 1 and θ, there are two
sectors isoparametric it. They are shown in Figure 10.3a. Because having contour
ratio 4 is a common bench mark for both sectors and rectangles, there are no
restrictions on the parameter θ that defines the sector or the rectangle.

Example 8 (General contour and isosceles triangle). Here we start with
a contour of contour ratio κ and seek an isoparametric isosceles triangle involving
a parameter t = sin θ, where θ is half the vertex angle. Because κisos ≥ 3

√
3

this problem places the constraint κ ≥ 3
√
3 on the general contour. A necessary

condition that the given contour and an isosceles triangle be isoparametric is that
κisos = κ. Use (10.7) for κisos with sin θ replaced by t to obtain

κ =
1√

1− t2
(1 + t)2

t
=

√
1 + t

1− t

1 + t

t
.

Now square both sides and rearrange terms to get

(1 + κ2)t3 + (3− κ2)t2 + 3t+ 1 = 0,

a cubic equation for t in terms of κ. When t = 0, the cubic polynomial on the left
has the value 1, and when t = −1, it has the value −2κ2, so it always has a root
in the interval (−1, 0). A negative root t does not correspond to a possible vertex
angle 2θ, so we ignore it.
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When κ = 3
√
3 the cubic equation becomes (2t − 1)2(7t + 1) = 0, which has

a double root t = 1/2 (and a negative root). The root t = 1/2 corresponds to
θ = π/6, which makes the triangle equilateral. When κ > 3

√
3 , it can be shown

that the cubic has two positive roots in the interval (0, 1). For example, when
κ = 3 + 2

√
2 the equation becomes

(t− 1

2

√
2)[(18 + 12

√
2)t2 − (2 + 3

√
2)t−

√
2] = 0.

This cubic has a root at t =
√

2/2, corresponding to 2θ = π/2, which gives an
isosceles right triangle. The quadratic factor has only one positive root t = 0.3093...,
corresponding to another isosceles triangle with a vertex angle of approximately 36o.

Example 9 (Rectangle and specified triangular shape). Suppose we want
to find an isosceles triangle that is isoparametric to a given rectangle. If the isosceles
triangle has base c and equal legs of length d, then d + c/2 = p/2 and s = ch/2,
where h is the altitude of the triangle, given by

h2 = d2 − (
c

2
)2 = (d− c

2
)(d+

c

2
).

There is no loss in generality in assuming that both the rectangle and isosceles
triangle have perimeter 2, which means that κ = 1/s. Then d + c/2 = 1 and
d− c/2 = 1− c. Hence

4s = 2ch = 2c
√
1− c,

and (10.10) becomes

a =
1

2
− 1

2

√
1− 2c

√
1− c, (10.11)

where 0 ≤ c ≤ 1. Figure 10.8 shows the graph of a, plotted as a function of c. The
maximal a occurs for c = 2/3 (when the triangle is equilateral) and is given by

amax =
1

2
− 1

6

√
9− 4

√
3 = 0.2601 . . . .

This upper bound on a also follows directly from (10.10) by noting that κ ≥ 3
√

3,
the bench mark for all isosceles triangles. It places a constraint on the rectangle
parameter a.

For each value of a satisfying 0 < a < amax there are two values of c giving
the same a, say c1 < c2. This means that (with one exception corresponding to
amax) there are two different isosceles triangles isoparametric to the rectangle. An
example is given in Figure 10.3b, which shows a rectangle with base 6 and altitude
2, together with two isoparametric isosceles triangles. One of them, with base 6,
altitude 4, perimeter 16, and area 12, is formed from two Pythagorean 3 : 4 : 5
triangles. When these are scaled by the factor 1/8 we get an isosceles triangle with
perimeter 2 and area 3/16, so c = 3/4 and a = 1/4. This gives the point (3/4, 1/4)
on the graph in Figure 10.8. The line a = 1/4 intersects the graph at a second
point (c0, 1/4), where c0 = (1+

√
13)/8 = 0.5757.... This corresponds to the second

isosceles triangle in Figure 10.3b (scaled by a factor 8).

ApostolGeoChapter 10_v2.indd   13ApostolGeoChapter 10_v2.indd   13 10/1/12   12:15 PM10/1/12   12:15 PM



308 Chapter 10. ISOPERIMETRIC AND ISOPARAMETRIC PROBLEMS

1/4

.5

.5 .6 2
3

3
4 1

0

a

c

Figure 10.8: Graph of a as a function of c, where a is given by (10.11).

Similarly, suppose that a rectangle with base b and altitude a is given, and
that we seek an isoparametric right triangle with base c and altitude h. Again
we assume that a ≤ b and require the perimeter to be 2, so that a + b = 1and
c + h +

√
c2 + h2 = 2. The last equation yields h = 2(1 − c)/(2 − c), and (10.10)

becomes

a =
1

2
− 1

2

√
1− 4c(1− c)

2− c
. (10.12)

The graph of (10.12), with a plotted as a function of c, resembles that in Figure
10.8. The maximal a occurs when c = h = 2−√ 2 (isosceles right triangle) and is
given by

amax =
1

2
− 1

2

√
8
√
2− 11 = 0.21995 . . . .

Again, this is a constraint on the rectangle parameter a. For each a with 0 < a <
amax there are two values of c giving rise to the same a; they correspond to two
right triangles with their legs interchanged. For small a, the graphs of both (10.11)
and (10.12) are almost linear with slope 1/2. There is a geometric reason for this.
When a is very small the rectangle’s base b is close to 1 and its area is nearly equal
to a. And for small c the triangle’s altitude h is close to 1 and its area is nearly c/2.
Equating areas, we have a ≈ c/2 for small a and c.

Each of the foregoing examples involves shapes described by a parameter that
can be adjusted to make two contour ratios equal. This makes the shapes para-
metrically similar, so they can be scaled to become isoparametric. We turn next to
special contours called rings that also depend on a single parameter.
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10.4 RING RATIOS

This chapter treats the simplest type of ring, the region between two similar simple
closed curves with similarity ratio λ, where 0 < λ < 1. An example is shown in
Figure 10.9. We call λ the size factor because it measures the size of the inner

perimeter p and area s perimeter λp and area λ s2 perimeter λp and area λ s2

Figure 10.9: A closed curve with perimeter p and area s used to form rings with size
factor λ. The inner contour can be located anywhere inside the outer contour.

contour relative to the outer one. If the outer contour has perimeter p and area s,
the inner contour has perimeter λp and area λ2s. The inner and outer contours,
being similar, have the same contour ratio κ = p2/4s.

The ring has its own contour ratio P 2/(4S),where P = p + λp is the total
perimeter (the sum of the outer and inner perimeters) and S = s − λ2s is its area
(the difference of the outer and inner areas). The contour ratio of the ring is related
to the contour ratio of the inner and outer curves by

P 2

4S
=

p2(1 + λ)2

4s(1− λ2)
=

p2(1 + λ)

4s(1− λ)
= κ

1 + λ

1− λ
.

We call this the ring ratio and denote it by ρ to distinguish it from the contour
ratio of the boundary curves. Thus we have

ρ = κ
1 + λ

1− λ
, (10.13)

where κ is the contour ratio for each closed curve forming the ring.
Similar rings have the same ring ratio and the same size factor. Moreover, if

two rings are formed from different boundary curves with the same contour ratio
κ, then from (10.13) we see that for the same size factor λ they also have the same
ring ratio.

Equation (10.13) also shows that

ρ > κ, (10.14)

and, in fact, the ring ratio is always greater than κ by the factor

1 + λ

1− λ
= 1 +

2λ

1− λ
.
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From (10.13) we find, as well, that λ is uniquely determined by ρ and κ:

λ =
ρ− κ

ρ+ κ
= 1− 2κ

ρ+ κ
. (10.15)

Of course, isoparametric rings have the same ring ratio, but not conversely. In fact,
when Theorem 10.1 is applied to rings we obtain:

Corollary 10.1. (Isoparametric Ring Theorem) Two rings can be scaled to become
isoparametric if and only if they have the same ring ratio.

Figure 10.10 shows various rings arranged as they would appear in Figure 10.5.
Rings of different shapes can have the same ring ratio. Rings joined with sloping
lines in Figure 10.10 have the same size factor λ. When λ tends to zero, the inner

0 π 2π 3π 4π 5π 6π 7π 8π 9π

λ 0 1/3 1/2 3/5 2/3 

0 4 8 12 16 20 24 28 

λ 0 1/5 1/3 1/2 3/5 2/3 3/4

ρ
k 2k 3k 4k 5k

Figure 10.10: Ring ratios of various rings.

contour shrinks to a point, and (10.13) shows that the ring ratio ρ becomes the
contour ratio κ, which serves as a bench mark with respect to the parameter λ. In
particular, the ring ratio of every circular ring is greater than π and can be made
arbitrarily close to π by allowing the hole to shrink to a point. In the same way, the
ring ratio of every square ring is greater than 4 and can be made arbitrarily close
to 4 by allowing the inner square to shrink to a point. Furthermore, (10.13) implies
that ρ→∞ when λ→ 1.
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10.5 ISOPARAMETRIC INEQUALITY FOR RINGS

Theorem 10.2. Among all rings with size factor λ, the circular ring has the small-
est ring ratio. Hence the ring ratio ρ of a ring with size factor λ satisfies

ρ ≥ π
1 + λ

1− λ
, (10.16)

with equality only for a circular ring.

Proof. From (10.13) we infer that among all rings with size factor λ the ring
ratio is smallest when κ is smallest, and this occurs when κ = π and the ring is
circular. The isoperimetric inequality (10.1) can be regarded as the limiting case of
(10.16) when λ→ 0.

A general ring ratio ρ as defined by (10.13) is a function of κ and λ, which we
can denote by ρκ(λ). Inequality (10.16) is a universal inequality,

ρκ(λ) ≥ ρπ(λ),

that holds for all rings with size factor λ. There are also local inequalities of the
same type for specified rings. For example, κ = 4 for a square ring, so the ring ratio
of a ring with size factor λ and contour ratio κ ≥ 4 satisfies ρκ(λ) ≥ ρ4(λ). And,
for all rings formed from contours with contour ratio κ we also have the inequality
ρκ(λ) > κ = ρκ(0).

Inequality (10.16) tells us when it is possible to have a square ring and circular
ring that are isoparametric. We can also see this visually by the display in Figure
10.10. The ring ratio of every square ring exceeds 4, but there are circular rings
with ring ratio arbitrarily close to π, so no square ring has ring ratio in the interval
between π and 4. For that interval, the hole in the circular ring is too small to make
a significant contribution to the total perimeter and area. This puts a constraint on
the circular ring in the form of a lower bound on the size factor. If the size factor
exceeds this lower bound, then for any square ring there is a circular ring with a
large enough hole to match ring ratios.

To describe this quantitatively, suppose that we are given a circular ring and
that we ask for an isoparametric square ring. The rings necessarily have the same
ring ratio ρ and, moreover, ρ > 4. We know from (10.15) that the size factor of a
circular ring is given by

λ = 1− 2π

ρ+ π
> 1− 2π

4 + π
=

4− π

4 + π
.

In other words, the square ring exists only if the size factor of the circular ring is
constrained by the inequality

λ >
4− π

4 + π
≈ 0.1202 . . . . (10.17)

This tells us that the hole in the circular ring should have radius slightly more
than 12% of the outer radius. Moreover, if λ satisfies (10.17) then (as will be
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demonstrated in Section 10.6) there always exists a square ring isoparametric to
the circular ring. The example in Figure 10.3b has λ = 1/2, which satisfies (10.17).
But λ = 1/9 does not satisfy (10.17).

When we treat the problem in its general form, a constraint of the form

λ >
κ2 − κ1

κ2 + κ1

(10.18)

will appear, generalizing (10.17). If the rings have equal contour ratios, as do the
sectorial ring and rectangular ring in Figure 10.4a, (10.18) becomes λ > 0, which
puts no new constraint on λ. This explains the difference between the examples in
Figures 10.4a and 10.4b.

10.6 ISOPARAMETRIC RINGS

We turn next to a general problem motivated by the example of the square ring
and circular ring in Section 10.5:

Isoparametric ring problem. Given a ring with contour ratio κ1 and size
factor λ1, under what conditions does there exist an isoparametric ring with contour
ratio κ2 and some size factor λ2?

The key to this problem is equality of the ring ratios:

ρ1 = κ1
1 + λ1

1− λ1
, ρ2 = κ2

1 + λ2

1− λ2
.

If ρ1 �= ρ2, there is no solution. Therefore, we seek conditions ensuring that

κ1
1 + λ1

1− λ1
= κ2

1 + λ2

1− λ2
. (10.19)

The problem splits naturally into two cases: κ1 = κ2 and κ1 �= κ2.
Case 1: κ1 = κ2. In this case, (10.19) holds if and only if λ1 = λ2, in which

event the rings can be scaled to become isoparametric. In other words, for any
two contours with the same contour ratio, say a pentagram and the long narrow
rectangle with the same contour ratio mentioned in Section 10.2, we can scale the
narrow rectangle to get a similar rectangle isoparametric to the pentagram. This
is always possible because of Theorem 10.1. Using these isoparametric contours as
outer contours, we scale each of them by the same size factor λ < 1 to obtain two
isoparametric rings. There are infinitely many solutions because we can use any
λ < 1. Therefore, the case κ1 = κ2 presents no difficulties and can be regarded as
trivial.

Case 2: κ1 �= κ2. We label the contour ratios so that the smaller one is κ1. Now
we have κ2 > κ1, and we want to satisfy (10.19). If λ1 is given, where 0 < λ1 < 1,
and we solve (10.19) for λ2, then we discover that

λ2 =
κ1(1 + λ1)− κ2(1− λ1)

κ1(1 + λ1) + κ2(1− λ1)
. (10.20)
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But we also need the inequality 0 < λ2 < 1. The denominator in (10.20) is always
positive, but the numerator is positive only if κ1(1 + λ1) > κ2(1− λ1). This puts a
constraint on λ1, namely,

λ1 >
κ2 − κ1

κ2 + κ1

. (10.21)

Therefore, if λ1 satisfies the constraint (10.21), then we can always find λ2 to satisfy
(10.19) and we also have 0 < λ2 < 1. On the other hand, if λ2 is given and we solve
(10.19) for λ1, then we arrive at a companion result to (10.20),

λ1 =
κ2(1 + λ2)− κ1(1− λ2)

κ1(1 + λ2) + κ2(1− λ2)
. (10.22)

Again, we need 0< λ1 < 1. The denominator in (10.22) is positive, and the numer-
ator is positive only if κ2(1 + λ2)> κ1(1−λ2), which translates to

λ2 >
κ1 − κ2

κ2 + κ1

.

This is automatically satisfied because κ1 − κ2 < 0, so there is no constraint on λ2.
Therefore, for given λ2 we can always find λ1 to satisfy (10.19), and we get ρ1 = ρ2.
Moreover, from (10.14) we have ρ1 > κ2, or

κ1
1 + λ1

1− λ1
> κ2,

which, in turn, is equivalent to (10.21). This means that when we solve for λ1 using
(10.22) it automatically satisfies inequality (10.21). Incidentally, because of (10.15),
the relations (10.22) and (10.20) can be expressed more simply in terms of the ring
ratio ρ = ρ1 = ρ2 :

λ1 =
ρ− κ1

ρ+ κ1
, λ2 =

ρ− κ2

ρ+ κ2
.

The foregoing results are summarized in the following theorem.

Theorem 10.3. Two rings with contour ratios κ1 and κ2 (κ2 ≥ κ1) and size factors
λ1 and λ2 can have the same ring ratio ρ if and only if

λ1 >
κ2 − κ1

κ2 + κ1

. (10.23)

In this case, the size factor λ2 is uniquely determined by the equation

λ2 =
ρ− κ2

ρ+ κ2
. (10.24)

When κ2 = κ1, constraint (10.23) is automatically satisfied, and (10.24) gives
λ2 = λ1. This case is illustrated by the two sectorial rings and the rectangular ring
shown in Figure 10.4a. All three rings have contour ratio 4 and equal size factor λ.
Infinitely many pairs of two sectorial rings or of a sectorial ring and a rectangular
ring are obtained by allowing λ to vary between 0 and 1. Another such example
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comes from the pentagram and the special rectangle mentioned in the foregoing
proof of Case 1.

As already noted, when the size factor λ → 0 the hole in a ring shrinks to a
point. The restriction λ > 0 is imposed on the size factor in order to produce an
inner closed curve similar to the outer one. But formula (10.13) that defines the
ring ratio ρ is meaningful if λ = 0 and gives ρ = κ in that case. Consequently,
the case κ1 < κ2 of Theorem 10.3 is applicable for the limiting value λ2 = 0, in
which event the constraint on λ1 in (10.23) becomes an equality. And conversely,
if λ1 =(κ2 − κ1)/(κ2 + κ1), then the corresponding value of λ2 is 0. Thus, for
example, if κ2 = 4and κ1 = π, a circular ring with ring ratio 4 and size factor
λ1 = (4− π)/(4 + π) can be scaled to become isoparametric to a square, a circular
sector, or any other contour with contour ratio 4, each of which can be regarded
as a limiting case of a ring with λ2 = 0. The reader can verify that the following
examples, which illustrate Theorem 10.3, also cover the corresponding limiting cases
with λ2 = 0 if the constraint inequality in (10.23) is changed to an equality.

Example 10 (Circular ring and regular polygonal ring). The problem
for circular rings and square rings considered in Section 10.5 can be generalized by
replacing the square with a regular n-gon. Taking κ0 = π and κn = n tan(π/n), we
have κn > κ0, so if a circular ring has size factor λ0 satisfying

λ0 >
n tan π

n − π

n tan π
n + π

,

there is always an isoparametric regular n-gon ring. When n = 4 this is inequality
(10.17). As n increases, the lower bound on λ0 decreases. For example, when
n = 3, the lower bound is about 0.2464, but when n = 12 it is about 0.0116. This
indicates that the radius of the hole in the circular ring needs to be more than 24%
of the outer radius to have an isoparametric triangular ring, but 1.2% suffices for
a dodecagonal ring. There is more latitude in finding isoparametric dodecagonal
rings because a dodecagon is more circular than a triangle.

Example 11 (Pythagorean 3:4:5 triangular ring and square ring). Con-
sider a triangular ring bounded by two similar Pythagorean 3 : 4 : 5 triangles. An
example with outer triangle of edges 9, 12, and 15 and size factor 1/3 is depicted
in Figure 10.11. All such rings have contour ratio κ = 6 and ring ratio ρ > 6. An
isoparametric square ring with inner side-length a and outer side-length b has con-
tour ratio 4 and the same ring ratio ρ. Since 4 < 6, we label the square ring as ring
1 and the triangular ring as ring 2. Constraint (10.23) states that isoparametric
square rings exist if they have size factor

λ2 > (6− 4)/(6 + 4) = 1/5.

The square ring in Figure 10.11 has λ2 = 1/2, which suffices. The triangular ring
has perimeter 48, so equality of total perimeters dictates that 48 = 12a, and we
find that a = 4, b = 8. But no square ring with size factor smaller than 1/5 is
isoparametric to any 3:4:5 triangular ring.
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Figure 10.11: A Pythagorean 3:4:5 triangular ring and an isoparametric square ring.

Example 12 (Two regular polygonal rings). This example compares a
ring formed by two regular n-gons with one formed by two regular m-gons, where
n > m. The contour ratio for the n-gon isκn = n tan(π/n), while that for the m-gon
is κm = m tan(π/m). Because κn is a decreasing function of n, we have κn < κm,
and (10.23) becomes

λn >
m tan(π/m)− n tan(π/n)

m tan(π/m+ n tan(π/n)
, (10.25)

where λn and λm replace λ1 and λ2 in Theorem 10.3. From the polynomial approx-
imation tan x ∼ x + x3/3, valid for small x, we see that for large m and n the
quotient on the right of (10.25) has the asymptotic value

π2

6
(
1

m2
− 1

n2
).

10.7 ISOPARAMETRIC RINGS WITH EQUAL INNER PERIMETERS
AND EQUAL OUTER PERIMETERS

Two rings that are isoparametric have the same area and the same total perimeter.
We can also construct such rings in which both inner perimeters are equal and both
outer perimeters are equal. For example, take two different polygons that circum-
scribe the same circle and have the same perimeter. Then they are isoparametric
and have the same contour ratio. Now scale each polygon by the same size factor λ
to produce two polygonal rings that are isoparametric. These rings have the addi-
tional property that both the inner perimeters are equal and the outer perimeters
are equal. In fact, for each λ we obtain a family of such isoparametric polygonal
rings by moving the inner contour, and by varying λ we obtain even more families.
This will be used in Section 10.8 to generate a remarkable family of incongruent
solids satisfying the properties (a) through (f) listed in Section 10.1. More gener-
ally, take two incongruent isoparametric contours bounded by simple closed curves.
Scale each of them by the same size factor λ to produce two incongruent isopara-
metric rings. Then these rings also have the property that both the inner perimeters
are equal and the outer perimeters are equal. Figure 10.4a shows such an example.
We leave it to the reader to verify that a necessary and sufficient condition for two
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isoparametric rings to have both the inner perimeters equal and the outer perime-
ters equal is that both the two outer contours be isoparametric and the two inner
contours be isoparametric.

10.8 INCONGRUENT SOLIDS WITH PROPERTIES (a) TO (f)

This section describes several families of incongruent solids having properties (a)
through (f) listed in the introduction. Each family is generated by isoparametric
circumscribing polygons of the type discussed in Section 10.7.

Start with a smooth solid of revolution whose cross sections by horizontal planes
perpendicular to the rotation axis are circular rings. Take any polygonal ring of
the type discussed in Section 10.7 that circumscribes the base, and use a similar
polygonal ring to circumscribe each parallel circular cross section above the base.
The union of these polygonal rings sweeps out a solid, an example of which is shown
in Figure 10.12a.

(a) (b)

Figure 10.12: Incongruent solids sharing properties (a) through (f) of Section 10.1.

Repeat the process, starting with a noncongruent isoparametric polygonal ring
on the base to produce a noncongruent solid like the example in Figure 10.12b. In
each horizontal cross section the two polygonal rings are isoparametric and circum-
scribe the same circle. Moreover, the two inner polygons have equal perimeters,
as do the two outer polygons. Equality of cross-sectional areas implies equality of
volumes of the two solids, and, because the perimeters are equal, it is not difficult
to prove that both the inner and outer lateral surface areas are equal. In each solid,
the inner lateral surface is similar to the outer lateral surface by some size factor λ.

We can choose the polygonal rings in infinitely many ways, so for a solid of
revolution we have infinitely many pairs of incongruent solids satisfying properties
(a) through (f). And we can generate more such families by starting with different
solids of revolution. In particular, when the solid of revolution is a hemisphere, the
solids are related to the Archimedean shells discussed in Chapter 5. In this case,
two different Archimedean shells with isoparametric polygonal bases circumscribing
congruent equators of two hemispheres provide examples of noncongruent solids
sharing properties (a) through (f). Moreover, the inner solid in Figure 10.12 can be
moved as suggested by Figure 10.9 to produce even more examples.
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PART 2: DISSECTIONS OF ISOPARAMETRIC REGIONS

10.9 DISSECTIONS INVOLVING BOUNDARIES

It is well known that any planar polygonal region can be dissected into smaller
polygonal pieces that can be rearranged to form any other polygonal region of
equal area (see for example [41; p. 221]).

(a) (b)

Figure 10.13: Dissection (a) of a triangle onto a rectangle; (b) of a rectangle onto another
rectangle of prescribed altitude. Dark lines show how the boundaries are transformed.

What happens to the boundaries in these standard dissections?

Figure 10.13a shows a dissection of a triangle onto a rectangle, and Figure 10.13b
shows a dissection of one rectangle onto another rectangle of prescribed altitude. In
both examples, part of the boundary of one polygon ends up inside the other. This
is to be expected, because the initial and final shapes have different perimeters.
Figure 10.34a shows an even more dramatic example, a famous hinged dissection of
Dudeney in which the entire boundary of a square ends up inside a triangle.

We are interested in dissections that not only preserve areas but also convert the
boundaries onto each other as well. We call these complete dissections. This requires
that both regions have equal areas and equal perimeters, so they are isoparametric.
To the best of our knowledge, such dissections have not been previously treated.

In Figure 10.14, the triangle and rectangle are isoparametric, but the dissection
shown is not complete because one boundary is not converted entirely onto the other.

6

2

2

6

5

2

Figure 10.14: Standard dissection converting a triangle onto an isoparametric rectangle.

In fact, there is no reason to expect that a complete dissection exists even though
the figures are isoparametric. Nevertheless, our next theorem reveals a surprising
and profound result: for any two isoparametric convex polygonal regions, a complete
dissection always exists. Moreover, the proof shows how to construct one.

Before proceeding, the reader might try to find a complete dissection that con-
verts the triangle in Figure 10.15 onto the isoparametric isosceles trapezoid shown.
This is a simpler task than for the pair in Figure 10.14.
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Figure 10.15: Equilateral triangle and an isoparametric trapezoid.

Figure 10.16 shows a complete dissection of an isosceles triangle onto an isosceles
trapezoid, and of a general triangle onto a trapezoid with the same base angles.

(a )

(b )

B b

B
b

Bb

Aa A

a

C

C C

a

A
angle bisector

Figure 10.16: Complete dissection converting (a) isosceles triangle onto isosceles trape-
zoid, and (b) any triangle onto a trapezoid. In (a), the unshaded piece has been flipped.
In (b) one piece is flipped and divided into two right triangles, the smaller of which is
flipped again.

10.10 COMPLETE DISSECTION OF POLYGONAL REGIONS

We turn now to the first principal result concerning complete dissection.

Theorem 10.4. Any two isoparametric convex polygonal regions can be converted
onto one another by complete dissection.

Proof. Consider two isoparametric convex polygonal regions A and B. Figure
10.17 shows an example, with A triangular and B quadrilateral; it displays all the es-
sential features required in treating general convex isoparametric polygonal regions.
The method of proof is suggested by an oversimplified intuitive idea: Remove each
boundary and perform a standard dissection of the interior of A to produce the
interior of B. Then restore the two boundaries to obtain the complete dissection.

To make this intuitive idea rigorous, refer to Figure 10.18a, which shows a frame
of constant width w protruding into each region along its boundary. Choose w small
enough so that the inner boundary of each frame will be a simple closed polygon
with the same number of sides. Each region now consists of two parts: the frame
plus the interior region it surrounds. Keep in mind that:

The sum of areas, frame plus interior, is the same for both regions A and B.
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A B

Figure 10.17: Isoparametric triangular and quadrilateral regions.

Now unfold each frame at the outer vertices (thought of as hinges) and lay it
out horizontally, as in Figure 10.18b. To be specific, use angle bisectors to cut each
frame into trapezoidal pieces with isosceles triangular gaps between adjacent pieces.

(a )

(b )
w w

w

Figure 10.18: Frames unfolded to form adjacent trapezoidal pieces with triangular gaps.

Next, use standard dissections (as in Figure 10.13) of the regions interior to the
frames in Figure 10.18a to convert them onto two rectangles with common altitude
w (the frame width), as indicated in Figure 10.19a. Each rectangle has area equal
to that of the interior that produced it, but, of course, the two rectangular areas
are not equal to each other.

(a )

(b )

(c )

w

Figure 10.19: (a) Dissection of interior regions produces two rectangles of equal altitude,
but not of equal area. Removing shaded triangular pieces in (b) to fill the gaps as shown
in (c) leaves two unshaded congruent rectangles in (b).

From each of these rectangles, remove smaller triangles as needed (see Figure
10.19b) to fill the triangular gaps in Figure 10.18b. This transforms the unfolded
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frames into two congruent rectangles shown in Figure 10.19c, whose lower bases
are the unfolded boundaries of A and B. By overlapping the rectangles we obtain
their common dissection (dissection 1) which also converts the full boundary of A
onto the full boundary of B. The leftover unshaded rectangles in Figure 10.19b
are also congruent because the sum of areas, frame plus interior, is the same for
both regions in Figure 10.18a. By overlapping the unshaded rectangles in Figure
10.19b, we obtain a common dissection (dissection 2) of the two interior dissections
inherited from Figure 10.19a. The union of common dissections 1 and 2 gives a
complete dissection of region A onto region B and completes the proof.

In the foregoing dissections, some pieces may have been flipped. However, as
will be demonstrated in Theorem 10.6, all complete dissections can also be done
without flipping, although this may require more pieces.

10.11 COMPLETE DISSECTION OF POLYGONAL FRAMES

The frames of constant width used in the proof of Theorem 10.4 lead us to consider
the problem of complete dissection of such frames, where now both inner and outer
boundaries are subject to conversion. Although frames are more complicated objects
than those in Theorem 10.4, our next principal result (Theorem 10.5) states that
any two isoparametric frames can also be converted onto one another by complete
dissection. First we explain precisely what we mean by a polygonal frame.

In this chapter, the term polygonal frame refers to a frame of constant width.
It has parallel inner and outer boundaries with constant distance separating the
parallel edges. We restrict our discussion to convex polygonal frames, that is, frames
in which both the inner and outer polygons are convex.

More precisely, start with a convex n-gon as inner boundary, and any frame-
width w. Draw lines outside the n-gon parallel to its sides at distance w from
the sides. Segments of the lines will form another convex n-gon outside the inner
boundary, like those in Figure 10.18a. The frame consists of the region between the
two n-gons, including both boundaries. When unfolded at the outer vertices, the
frame forms a set of adjacent trapezoidal regions akin to those in Figure 10.18b.

Complete dissections require isoparametric frames, which have equal areas and
equal total perimeters (inner plus outer). Figure 10.20 shows an example mentioned
in Figure 10.11: a Pythagorean 3:4:5 triangular frame of constant width w = 2, and
a square frame of the same constant width.

Note that both the areas and total perimeters of these frames have the same
numerical value, 48. This is not merely a coincidence, but is a consequence of the
following lemma when w = 2.

Lemma 10.1. The width w, area A, and total perimeter P of a convex polygonal
frame are related by

A =
1

2
Pw. (10.26)

The proof follows easily by applying the area formula for adjacent trapezoids
forming the frame.

As an immediate consequence of Lemma 10.1 we have the following crucial result:
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Corollary 10.2. All isoparametric convex polygonal frames have the same width.

Now return to Figure 10.20, which shows an unfolding of each frame into trape-
zoids of constant altitude w = 2, followed by a dissection onto a rectangle of the
same altitude with two horizontal bases, the sum of whose lengths is the total
perimeter of the frame. Because the two frames are isoparametric, so are the two
rectangles. At the bottom of Figure 10.20, the dissected rectangles are superim-

8 4

9
3

4

12

w = 2

15
5

w = 2

common dissection

Figure 10.20: Complete dissections of two special isoparametric frames.

posed to obtain a common dissection of the two frames that converts their total
boundaries, indicated by the heavy lines.

The same type of argument can be applied to any pair of isoparametric convex
polygonal frames to prove the following theorem.

Theorem 10.5. Any two convex isoparametric polygonal frames can be converted
onto one another by complete dissection.

10.12 COMPLETE DISSECTIONS WITHOUT FLIPPING

In the foregoing dissections, some pieces may have been flipped. Although flipping
might reduce the number of dissection pieces, in some applications, such as skin
grafting or laying out carpeting, flipping is undesirable. It is known that every
standard dissection can be carried out without flipping. Now we show that the
same is true for every complete dissection.

Theorem 10.6. Every complete polygonal dissection can be done without flipping.

Flipping a piece turns it into its mirror image, so to prove Theorem 10.6 it
suffices to show that a complete dissection of a general polygonal piece onto its
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mirror image can be done without flipping and in such a way that each edge of
the polygon is converted to the corresponding edge of the mirror image. Such a
dissection requires more than completeness, and we call it strongly complete. Now
we will prove that every polygon can be converted onto its mirror image by using
strongly complete dissection. First dissect the polygonal piece into triangles, as
illustrated in Figure 10.21. Then perform a strongly complete dissection on each
triangle. To do this, we can dissect each triangle into six right triangles as shown

Figure 10.21: Quadrilateral and pentagon cut into triangular pieces.

in Figure 10.22a, where now each right triangle has only one leg as part of the
boundary of the original triangle. This reduces the problem to that of dissecting a
right triangle onto its mirror image, without flipping, so that one leg gets converted
onto its mirror image. Figure 10.22b shows how a right triangle can be cut into two
isosceles triangles. Rotate one of them to convert the given leg as shown.

By combining Theorems 10.4 and 10.6 we conclude that two isoparametric con-
vex polygons can be converted onto one another without flipping.

(b )(a )

Figure 10.22: (a) Cutting a general triangle into right triangles, each of which has only
one leg subject to conversion. (b) Converting one leg of a right triangle onto its mirror
image.

Examples. Figure 10.23 shows two different complete dissections converting two
isoparametric curvilinear regions onto one another. In the left figure (taken from
Figure 10.2), a chord bisects the oval, and one piece is flipped as in the examples of
Figure 10.2 to produce the symmetric heart-shaped figure. A complete dissection
without flipping is shown on the right, where cuts are made along the diagonals of
the square inscribed in the oval, and then the pieces are rotated as shown. This
dissection works for any oval having two perpendicular axes of symmetry.
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with flipping without flipping

Figure 10.23: Two complete dissections of isoparametric curvilinear regions.

A

B

A

B

13
3

5

2

4

2

4

Figure 10.24: Complete dissection of rectangular frame and isoparametric square frame.

Figure 10.24 shows a complete dissection without flipping of a rectangular frame
onto an isoparametric square frame. A similar dissection works for any two rectan-
gular frames of equal width having equal outer perimeters.

10.13 COMPLETE DISSECTIONS USED TO APPROXIMATE
CURVILINEAR REGIONS

Figure 10.25 shows a frame that is partially polygonal and partially curvilinear.
This example consists of a quadrilateral portion together with a curvilinear portion
obtained as a limit of a portion of a polygonal frame of the same constant width
w. The second region in Figure 10.25 is a circumgon of inradius w that can be

w

ww

w

w

w

w w
w

Figure 10.25: Frame with partially curvilinear boundaries, and a circumgon.

regarded as a degenerate case of the frame on the left, with the inner boundary
replaced by a single point and the curved portion being a circular arc. Circumgons
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were introduced in Chapter 4, where it was shown that the area A and perimeter
P of any circumgonal region with inradius w are related by A = Pw/2, which is
(10.26) in Lemma 10.1. More general frames, partially curvilinear and partially

w=2

w

r

w=2

π(r+1)/4 + (r+6)/2
outer edge length

Figure 10.26: A partially semicircular frame and an isoparametric square frame.
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1
2

2

(a) (b)

Figure 10.27: Partially circular regions isoparametric to polygonal regions.

polygonal, can be introduced similarly, so that they share formula (10.26) of Lemma
10.1. By Corollary 10.2 any two isoparametric partially curvilinear frames have the
same width.

Figure 10.26 shows an example in which the curvilinear part is semicircular and
the polygonal part is rectangular. The partially semicircular frame and the square
frame shown adjacent to it are isoparametric. Actually, the square frame is only
one of infinitely many rectangular frames of width w = 2 isoparametric to the
semicircular frame. If the inner radius of the semicircular part is r, the common
value of the area and the perimeter is A = P = 2π(r + 1) + 4(r + 2).

Figure 10.27a (borrowed from Figure 10.3a) shows two isoparametric circular
sectors that are also isoparametric to the same rectangle. Figure 10.27b (from
Figure 10.4b) shows a circular frame and an isoparametric square frame of the
same width.

Figure 10.28 shows how the circular sectors in Figure 10.27a can be dissected
into an even number of radial slices that can be rearranged to form a figure approx-
imating the same rectangle. In one case the slices are arranged in horizontal layers,

θ

θ

θ

θ

π

π
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2 11
2θ1

Figure 10.28: Radial slicing of two special circular sectors with their boundaries, rear-
ranged differently to approximate the same isoparametric rectangle.

Figure 10.29: Radial slices of a circular frame and its boundary, rearranged to approxi-
mate the isoparametric square frame.

and in the other case in vertical layers. As the number of slices increases without
bound, both approximations have the same rectangle as a limit, with the curved
boundaries becoming the rectangular boundaries, in the style of Archimedes.

Figure 10.29 shows a corresponding dissection of the circular frame in Figure
10.27b that approximates the square frame.

The two frames in Figure 10.27b are members of an infinite family of isopara-
metric regular frames of width w = 1, with examples shown in Figure 10.30.

...
1 1

1

1

1

Figure 10.30: Regular polygonal frames and a circular frame, all isoparametric.

Each inner regular n-gon in this family has an incircle of diameter dn, where

dn =
3π

n tan π
n

− 1,

θ θ
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and each outer regular n-gon has an incircle of diameter Dn = dn + 2w = dn + 2.

10.14 ISOPERIMETRIC PROPERTIES OF FRAMES

This section introduces new isoperimetric properties of convex polygonal frames.
First, we prove the following:

Theorem 10.7. Among all convex isoparametric n-gonal frames, the equiangular
n-gonal frames have the properties:

(a) the inner polygon has the largest perimeter;
(b) the outer polygon has the smallest perimeter.

Proof. By Corollary 10.2, all isoparametric n-gonal frames have the same width,
which we denote by w. We illustrate the proof with a quadrilateral frame, shown
in Figure 10.31a. A convex polygonal frame with outer perimeter a and inner
perimeter b has total perimeter P = a + b. Let Δ = a − b denote the difference of
the outer and inner perimeters. In Figure 10.31a, right-angle cuts at each vertex of
the inner boundary divide the frame into four rectangles and four corner pieces, and
Δ is the sum of the lengths of the heavy line segments meeting at the four outside
vertices.

The four corner pieces can be translated so their inner vertices are brought to a
common point that serves as the center of a circle of radius w, as in Figure 10.31b.

The sum of the vertex angles at the inner vertices of the corner pieces is exactly
360◦, hence in their new positions, the union of the four corner pieces is a circumgon
that fills a quadrilateral region circumscribing a circle of radius w. For a general
n-gonal frame, this will be an n-sided circumgon with inradius w.

The perimeter of this circumgon is Δ, and among all n-gonal frames, Δ will
have its smallest value when the circumgon is equiangular. This is illustrated for a
quadrilateral by comparing perimeters in Figures 10.31b and 10.31c.

(a) (b) (c) (d)

Figure 10.31: The difference Δ between outer and inner perimeters in (a) is the perimeter
of a circumgon in (b) with inradius w. This perimeter is smallest when the circumgon is
equiangular (a regular polygon), as shown in (c) for n = 4, and in (d) for n = 8.

The frame in Figure 10.31a has perimeter P = a+b = 2b+Δ, hence 2b = P−Δ.
So, for a given total frame perimeter P and width w, the inner perimeter b will be
largest when Δ is smallest, and this occurs for equiangular n-gonal frames. This
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proves Theorem 10.7a. The proof of Theorem 10.7b follows in analogous fashion
using the relation 2a = P +Δ.

Corollary 10.3. For given total perimeter P , all equiangular isoparametric frames
have the same Δ, hence equal inner perimeters b and equal outer perimeters a.

By a limiting argument, Theorem 10.7 implies: Among all isoparametric frames,
the circular frame has the largest inner perimeter and the smallest outer perimeter.
Figure 10.30 compares a circular frame with regular polygonal isoparametric frames.

Parallel frames.

Equiangular frames are special cases of parallel frames, illustrated in Figure 10.32.
Two n-gonal frames are called parallel if corresponding edges are parallel, or, equiv-
alently, if corresponding angles of the outer polygons are equal. Each frame has its
own constant width, but two parallel frames can have different widths.

Figure 10.32 shows three parallel pentagonal frames of different widths, one of
them being a circumgon, which can be regarded as a frame whose inner boundary
is a point. Circumgons play a fundamental role among parallel frames, as revealed
by the following isoperimetric property.

w w
a

b

i

i

αi βi

Figure 10.32: Three parallel pentagonal frames of different widths. Corresponding angles
at the outer polygons are equal. Among all parallel n-gonal frames of given total perimeter,
the circumgon has largest width and therefore largest area.

Theorem 10.8. Of all parallel convex n-gonal frames with a given total perimeter,
the circumgon has the maximal area.

Proof. For a given convex n-gonal frame, denote the lengths of the outer edges
by a1, ..., an, and the corresponding lengths of inner edges by b1, ..., bn, and let
Δi = ai − bi. The total perimeter of the frame is

P =

n∑
i=1

(ai + bi) =

n∑
i=1

(2bi +Δi),

and we are comparing all parallel frames with different widths w for a given value
of P . The parallel edges of lengths ai and bi form part of a trapezoid of altitude
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w and base angles αi and βi indicated, respectively, by single arcs and double arcs
in Figure 10.32. The difference Δi is the sum of the lengths of two segments,
Δi = w cotαi + w cotβi = wci, where ci = cotαi + cotβi. For a given i, ci is the
same constant for all n-gonal parallel frames because corresponding angles of such
frames are equal. Therefore

P = 2
n∑

i=1

bi + w
n∑

i=1

ci = 2B + wC,

where B =
∑n

i=1 bi is the perimeter of the inner polygon, and where C =
∑n

i=1 ci
has the same value for all parallel frames. Hence

w =
P − 2B

C
,

from which it follows that for fixed P , w attains its largest value when B = 0, that
is, when the inner boundary shrinks to a point. This occurs for the circumgon with
inradius equal to this maximal width w. By Lemma 10.1, the area of each frame
of given perimeter is proportional to its width, so the maximal area occurs for the
circumgon, as asserted.

We have verified that Theorem 10.8 can be extended to frames that are partially
curvilinear, in which case the curved part of the circumgon is an arc of the incircle.

10.15 DESIGNATED COMPLETE DISSECTIONS

Our proof of Theorem 10.4, which shows how two isoparametric polygonal regions
can be converted onto one another by complete dissection, can be modified slightly
to prove many surprisingly stronger results. For example, consider two isoparamet-
ric convex polygonal regions, each of whose boundaries is divided into the same
number of parts of prescribed but arbitrary lengths. Imagine that corresponding
parts of equal length are assigned the same color, say r (red), g (green), b (blue),
y (yellow), v (violet), as in the examples of Figure 10.33. Then there is a complete

r

g

b
y

v
y

g
v

r
b

r g b y v r g by v

A B

Figure 10.33: Two isoparametric polygons with boundaries divided into parts of pre-
scribed length identified by colors r, g, b, y, v. The unfolded frames with gaps filled form
two congruent rectangles with pieces of the same color being congruent.

dissection of the polygons such that all parts of the boundaries are converted onto
another as designated by the colors. To see why, unfold the frames and fill the
gaps as in the proof of Theorem 10.4 to form two congruent rectangles as in Figure
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10.19c. Cut the rectangular pieces with prescribed colors as in Figure 10.33. Now
rearrange the rectangular pieces to have the same order of colors. By overlapping
the two congruent rectangles as before we obtain a common dissection as desired.

An important special case occurs when the parts themselves are the edges of
two isoparametric n-gons, which may or may not be congruent. Then the foregoing
dissection provides edge-to-edge conversion. In particular, if the n-gons are mirror
images of one another, this gives another proof of Theorem 10.6.

We can also adapt designated dissections to polygons of equal area with unequal
perimeters. Figure 10.34b shows an example, a square and equilateral triangle of
equal areas with the shorter boundary of the square converted onto part of the
longer boundary of the triangle, as indicated by the heavy lines. We can also divide
the shorter boundary into pieces and convert them into designated pieces on the
longer boundary, as was done in Figure 10.33. Moreover, we can select part of one
boundary so dissection converts it into the interior of the other polygon. To do so,
simply rotate by 180◦ (in the unfolded frame in Figure 10.33) the corresponding
rectangle having that part as its base.

(b)(a) (c)

r

r

g

b

y b

g y

Figure 10.34: Polygonal regions with equal areas and unequal perimeters. In (a), the
boundary of the square is converted to lie inside the triangle. In (b) and (c), parts of the
shorter boundary are converted onto designated parts of the longer boundary.

10.16 CONCLUDING REMARKS

In view of Max Dehn’s counterexample that settled Hilbert’s third problem, exten-
sions of our results on complete dissections in Part 2 to solids in 3-space are not
always possible. Nevertheless, circumsolid shells, introduced in Chapter 4, have
properties analogous to polygonal frames. For example, all circumsolid shells have
constant thickness (see Theorem 4.19a). The analog of Lemma 10.1 is given by The-
orem 4.11. If two polyhedral solids of equal volume and equal surface area can be
dissected onto one another, it may be of interest to investigate whether a complete
dissection exists that converts the boundaries onto one another.

Frederickson’s book [41] gives an admirable introduction to the field of geometric
dissections, and contains a valuable bibliography of results. Although there is a vast
literature on standard polygonal dissection, we were not able to find any references
relating to complete dissections of the type discussed in this chapter.

It is surprising that complete dissections have not been previously discussed in
connection with cake slicing. Here’s a natural question: Can we cut a cake with
white icing on top and chocolate icing on its outer edges and rearrange the pieces
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to form a cake of another shape (as in Figure 10.23) so that the white icing stays
on top and the chocolate icing stays on the outer edges of the rearranged cake?
Theorem 10.6 shows that this can always be done for polygonal cakes.

NOTES ON CHAPTER 10

The results in Part 1 are based on the authors’ paper [13], which received a
Lester Ford Award in 2005. Most of those in Part 2 appear in the authors’ paper
[28].

The ideas introduced in Part 1 suggest a host of complex and interesting prob-
lems for further study. First, we can find isoparametric rings such that the hole
in each ring has a shape different from that of the outer contour. Although the
results of this chapter deal with holes similar to the outer contour, they can also
be extended to treat isoparametric holes that are dissimilar. Second, most of the
results can be extended to higher-dimensional space, which allows many ways to
extend isoparametric problems. For example, in 3-space we can compare volumes
and surface areas, or we can compare surface areas and linear sizes such as edge-
lengths and perimeters, or volumes and linear sizes. In higher-dimensional space we
can compare n-dimensional and m-dimensional volumes and sizes. Third, instead of
requiring that the perimeters and areas of two plane regions be equal, we could ask
that they have prescribed ratios. This more general situation can be treated using
the theorems of this chapter. There are similar extensions in higher-dimensional
space.
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This problem can be easily solved by the methods developed in this chapter. The reader

may wish to try solving it before reading the chapter.

The figure illustrates a special type of pursuit problem involving two missiles
fired simultaneously. The problem is challenging because at first sight it appears
that not enough information is given to solve it.

Missile 1 is initially at the point marked 1, and it moves clockwise along the
circle at a constant speed v until it leaves the circle at some unknown point and
continues at the same speed along the tangent line at that point.

1 2?

Missile 2, initially at point marked 2, moves at constant speed 2v, and is required
to follow a path that intercepts missile 1, subject to the following constraints. Ex-
cept for the initial moment when both missiles are fired, missile 2 cannot see missile
1, so this is a blind pursuit. The initial distance from point 1 to point 2 is equal to
the perimeter of an equilateral triangle inscribed in the circle.

To allow for the possibility that missile 1 moves directly toward point 2, missile
2 travels along the straight line toward point 1 until it reaches the point marked ?
where collision would occur. If collision occurs at ?, the pursuit is over. If not, this
means that missile 1 detached from the circle at some other point (not known).

Find the path missile 2 should follow to overtake missile 1.

331
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11
As in Chapter 1, this chapter involves a plane base curve, called the tan-

gency curve, along which a tangent vector moves continuously, its free end
tracing another curve called the free-end curve. Earlier chapters dealt with
the area of the region between the tangency curve and the free-end curve.
Part 1 of this chapter relates the arclength functions of the two curves, and
Part 2 introduces tanvolutes, a generalization of classical involutes.

As in Chapter 1, each curve is initially described by its geometric proper-
ties rather than by equations. The use of sweeping tangents determines the
arclength as a function of the angle of turn of the tangent line. Examples in
Part 1 include the arclength of a circle and tractrix, for which the tangent
vector has constant length, and the arclength of exponential, parabolic, and
cycloidal curves, for which the tangent vector has variable length. A knowl-
edge of the arclength function gives a description of each curve by an intrinsic
equation. Part 1 also treats the classical involute, a curve that intersects every
tangent line to the base curve at a right angle. One example is the tractrix,
an involute of a catenary.

Part 2 introduces the tanvolute, which intersects every tangent line to the
base curve at any given fixed angle. This minor change in the definition of
a classical concept leads to a wealth of new examples and phenomena. Our
treatment is based on two differential equations relating four functions of the
angle of turn: the arclength functions for the base curve and for its tanvolute
obtained in Part 1, the length of the tangent from the base to the tanvolute,
and the fixed angle. The parameters in the differential equations contribute
many essential features to the solution curves. Even when the base curve is
relatively simple, the variety in the shapes of the tanvolutes is remarkably
rich. To illustrate, as a circle shrinks to a single point, its tanvolute becomes
a logarithmic spiral!

An application is given to a generalized pursuit problem in which a missile

is fired at constant speed in an unknown tangent direction from an unknown

point on a base curve. Surprisingly, it can always be intercepted by a faster

constant-speed missile that follows a specific tanvolute of a given base curve.
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334 Chapter 11. ARCLENGTH AND TANVOLUTES

PART 1: ARCLENGTH

11.1 INTRODUCTION

In Chapter 1 we used sweeping tangents to calculate area. Now we use them to find
arclength. Figure 11.1 shows a close-up view of the tangent sweep introduced in
Figure 1.16. Each tangent segment is attached to a curve we call the tangency curve
τ . The point of tangency moves along τ in a given direction, called the positive
direction, as indicated by the arrowhead in Figure 11.1. At each point of τ the
tangent line defines two rays, one in the positive direction of motion, the other in
the opposite direction. It may be helpful to imagine an automobile driving along τ
with its headlight beam indicating the direction of a tangent ray. If the automobile
moves forward in the positive direction, its headlight beam indicates the direction of
motion. If it drives backward, the headlight beam points in the direction opposite
to the motion.

Assume a tangent vector moves continuously, always pointing in the positive
direction during the motion, or else always pointing in the opposite direction. The
moving tangent vector sweeps out a region we have called the tangent sweep. The
free end of the tangent vector traces a curve σ called the free-end curve. There
are two possible free-end curves, σ+ generated when the tangent vectors point in
the positive direction, and σ− generated when the tangent vectors point in the
backward direction.

A

t

B
Δl

Δl

β

Δα

Δt σ

τ

tΔα

Δs

α

O

Figure 11.1: Arclength relations determined by two nearby tangents.

We denote by l the arclength function of τ , which tells us how far a particle
moves along τ from an initial position to an arbitrary point on the curve. Similarly, s
denotes the corresponding arclength function of σ. The arclength functions provide
intrinsic descriptions of the curves. We denote by t = t(α) the function whose
absolute value is the length of the tangent vector, where α is the angle between
the moving tangent and an initial direction, for example, the tangent direction
at a conveniently chosen point denoted by O in Figure 11.1. We know that |t(α)|

ApostolGeoChapter 11_v2.indd   4ApostolGeoChapter 11_v2.indd   4 10/3/12   11:34 AM10/3/12   11:34 AM



11.2. TANGENT IN FORWARD DIRECTION 335

provides a polar description of the tangent cluster, whose area is equal to that of the
tangent sweep. Earlier chapters used knowledge of t(α) to determine areas of many
classical regions. This chapter does not treat areas, but shows that a knowledge of
t(α) gives the arclength functions l and s in terms of α.

11.2 ARCLENGTH OF TANGENCY CURVE: TANGENT IN THE
FORWARD DIRECTION

Figure 11.1 shows the tangent segment of length t = t(α) at position A and at
a nearby position B as α changes by Δα. The point of tangency slides from A
to B along τ through distance Δl, and the free end of the tangent vector traces
a small arc Δs on σ. We treat arcs Δs and Δl as linear approximations to the
curves, as depicted in Figure 11.1 for small Δα. Thus, arc Δs is the hypotenuse of
a right triangle, one leg of which is t(α)Δα, due to rotation of the tangent vector
through angle Δα without changing its length. The other leg is made up of two
parts, Δl +Δt, where Δl is caused by sliding the rotated tangent along τ without
changing its length, and Δt is caused by the variability of its length. In what
follows, we assume that arclength l increases as the point of tangency moves along
τ , so Δl is positive. However t may increase or decrease during the motion, so Δt
can be positive or negative. In Figure 11.1 the tangent vector points in the positive
direction, and Δt is shown as positive.

For a given α, let β denote the complement of the angle between the tangents
to τ and σ. Thus β is a function of α. The triangle ratio for tan β in Figure 11.1
yields the approximate relation

Δl +Δt ≈ t(α)Δα tanβ.

Divide by Δα and let Δα→ 0 to obtain a differential equation relating the deriva-
tives of l and t:

dl

dα
+

dt

dα
= t(α) tanβ. (11.1)

Integrating (11.1) over the interval [0, α] we find a natural equation for l in terms
of t:

l(α)− l(0) + t(α)− t(0) =

∫ α

0

t(θ) tanβ dθ. (11.2)

In most applications we choose O so that l(0) = 0.

11.3 ARCLENGTH OF TANGENCY CURVE: TANGENT IN THE
BACKWARD DIRECTION

In some applications it is convenient to reverse the direction of the tangent vector
so it points opposite to the direction of increasing l, as shown in Figure 11.2b. Then
the triangle ratio for tan β becomes |Δl −Δt| ≈ t(α)Δα tanβ, where the absolute
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336 Chapter 11. ARCLENGTH AND TANVOLUTES

value allows for the possibilities Δl > Δt (Figure 11.2a), and Δt > Δl (Figure
11.2b). This leads to a corresponding change in (11.1):

| dl
dα
− dt

dα
| = t(α) tanβ, (11.3)

and, instead of (11.2), we now have the backward integrated version

|l(α)− l(0)− t(α) + t(0)| =
∫ α

0

t(θ) tanβ dθ. (11.4)

Δl−Δt

Δl

t

β
Δl

Δα

ΔtΔt−Δl

A
Δl

B

t

β
Δl

Δα
Δt

τ τ

σσ
(a) (b)

A

B

Figure 11.2: Arclength relations when tangent vector has backward direction.

Guided by the automobile analogy, we call (11.2) the forward relation and (11.4)
the backward relation. They are identical when t(α) is constant.

Arclength of free-end curve.

Let Δs denote the change in arclength s of free-end curve σ (the hypotenuse of the
small triangle in Figure 11.1), measured so that s = 0 when α = 0. Then we have
an approximate relation, which also holds for Figure 11.2:

Δs ≈ t(α)Δα

cosβ
,

and which gives us a differential equation for s,

ds

dα
=

t(α)

cosβ
. (11.5)

Integrating (11.5), we obtain an equation for s in terms of t:

s(α) =

∫ α

0

t(θ)

cosβ
dθ. (11.6)
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Relating arclengths of free-end curve and tangency curve.

A direct connection between the arclengths l of τ and s of σ can be found by
eliminating β in the basic derivative relations (11.1) and (11.5). Square them and
use the identity tan2 β = sec2 β − 1 to obtain the relation

(
dl

dα
+

dt

dα
)2 = (

ds

dα
)2 − t2(α), (11.7)

which involves arclength functions of τ and σ. It can also be derived directly by
applying the Pythagorean Theorem to the triangle with hypotenuse Δs in Figure
11.1. Relation (11.7), in turn, gives an explicit formula expressing s in terms of l:

s(α) =

∫ α

0

√
t2(θ) + (

dl

dθ
+

dt

dθ
)2 dθ. (11.8)

It is easy to show that the classical arclength integral in polar coordinates is a
limiting case of (11.8). Take τ to be a small circular arc that shrinks to a point.
Then t(α) becomes the radial distance r from the point to σ, dl/dα→ 0, and (11.8)
becomes the classical arclength integral:

s(α) =

∫ α

0

√
r2 + (

dr

dθ
)2 dθ.

Also, (11.8) can be transformed to resemble the classical integral in rectangular
coordinates, ∫ b

a

√
1 + (f ′(x))2 dx,

for the arclength of a curve y = f(x) between two points (a, f(a)) and (b, f(b)).
This follows from (11.8) by the substitution dx = t(θ)dθ and dy = dl + dt. The
orthogonality of dx and dy is revealed by the small right triangle in Figure 11.1.

One can also use (11.7) to formulate a counterpart to (11.8) expressing l in terms
of s. This is left as an exercise for the reader.

11.4 EXAMPLES: TANGENTS OF CONSTANT LENGTH

All such examples are special cases of the bicycle problem discussed in Chapter 1,
with constant length t(α) = k. For any choice of τ and σ, both arclength formulas
(11.2) and (11.4) become

l(α)− l(0) = k

∫ α

0

tanβ dθ, (11.9)

and (11.6) takes the form

s(α) = k

∫ α

0

1

cosβ
dθ. (11.10)

Now we consider several examples by specializing τ and σ.
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338 Chapter 11. ARCLENGTH AND TANVOLUTES

Circular arcs.

For arclengths of concentric circles of radii r and R, we use (11.9) and (11.10). From
Figure 11.3a we find tan β = r/k and cos β = k/R. Taking l(0) = 0, we obtain the
familiar formulas for the length of a circular arc subtended by an angle α:

l(α) = rα, s(α) = Rα.

β

r
R

α
k β

l

s

(a)

αβ

t(α) l

O

(b)

α=0

O

P

P

σ

σ
τ

τ

r

Figure 11.3: (a) Circular arclength. (b) Alternative choice of σ as a line through the
center.

To demonstrate the flexibility in the choice of free-end curve we now choose σ
to be a line through the center of the circle τ of radius r as in Figure 11.3b. In this
example, t(α) is not constant, but t(α) = r tanα and l(α) = rα, so

t(α)− l(α) = r(tanα− α).

On the other hand, from the backward relation (11.4) we also find (because now
β = α)

t(α)− l(α) = r

∫ α

0

tan2 θ dθ.

Therefore, as a fringe benefit we obtain the known integration formula

∫ α

0

tan2 θ dθ = tanα− α. (11.11)

We can also derive (11.11) using the area of the tangent sweep in Figure 11.3b,
which is that of a right triangle of edges r and t(α) = r tanα, minus the area of the
circular sector subtending angle α. But this area is also that of the tangent cluster
which equals 1

2r
2
∫ α

0
tan2 θ dθ, and again we obtain (11.11).

Tractrix.

Now take the tangency curve τ to be a tractrix, the trajectory of a toy on a taut
string being pulled by a child walking along a linear path, which we take as σ, as
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shown in Figure 1.18. We have shown in Chapter 1 that the area of the entire region
between the tractrix and the horizontal line is that of a quarter of a circular disk.

Next we calculate the arclength. In Figure 11.4 the tangency curve τ is a tractrix,
σ is the positive x axis, the tangent segment has constant length k, β = α, and
l(0) = 0, hence (11.9) becomes

l(α) = k

∫ α

0

tan θ dθ = −k log(cosα). (11.12)

This is the natural equation for the tractrix, expressing its arclength in terms of α.

l

β

α

k
τ

σ

Figure 11.4: Arclength of tractrix.

If the point of tangency in Figure 11.4 has cartesian coordinates (x, y), then we
have cos α = y/k, and (11.12) gives the arclength L = L(y) of the tractrix from
(0,k) to (x, y) as

L = −k log y

k
.

From this we find y = ke−L/k, which means the ordinate y decreases exponentially
with L. In particular, if an automobile drives along the tractrix with constant
speed, its distance from the x axis decreases exponentially with time.

The arclength formula (11.10) for the free-end curve yields an unexpected fringe
benefit for the tractrix. Using β = α in (11.10), we find

s(α) = k

∫ α

0

1

cos θ
dθ = k log

1 + sinα

cosα
.

Let (x, y) be the point of tangency on the tractrix in Figure 11.4. Because σ is the
x axis, we find

x = s(α)− k sinα, y = k cosα.

Using cos α = y/k, we find the classical cartesian representation of the tractrix as
a direct consequence of natural equation (11.12):

x = k log
k +

√
k2 − y2

y
−
√
k2 − y2.
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340 Chapter 11. ARCLENGTH AND TANVOLUTES

In more general examples, where t(α) is not constant, whenever σ is a straight line
we can take it to be the x axis and measure α from a vertical line. From a right
triangle like that in Figure 11.4, the natural equation for s as a function of α yields

x = s(α)− t(α) sinα, y = t(α) cosα,

which are parametric equations of curve τ in rectangular coordinates.

11.5 TANGENT SEGMENTS OF VARIABLE LENGTH

Now we consider examples with tangent segments of variable length, and discuss
arclengths of classical curves described by geometric properties rather than by equa-
tions. Our results for arclength provide natural or intrinsic equations for the curves.

Exponential.

In Figure 11.5 the tangency curve τ is the graph of an exponential y = ex/b, where
b is a positive constant, and the free-end curve σ is the x axis. It is known (see
Chapter 1) that exponential curves are the only curves with constant subtangents.
In fact, the exponential curve in Figure 11.5 has constant subtangents of length b,
and we have used this geometric property to find the area of the region under an
exponential curve without integral calculus.

b

t(α)

α

β

(x,y)

Figure 11.5: Arclength of exponential.

For arclength of the exponential, Figure 11.5 shows that t(α) = b/ sinα. Again
we have β = α, hence t(α) tanβ = b/ cos α. Integrate (11.4) over the interval [α0, α]
to find, with l(α0) = 0,

l(α) = b(
1

sinα0
− 1

sinα
+ log

1 + sinα

cosα
− log

1 + sinα0

cosα0
). (11.13)

This natural equation for the exponential is valid for 0 < α0 < α < π/2.
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At a general point of tangency (x, y) with angle α we have

t(α) =
√

b2 + y2, sinα =
b√

b2 + y2
, cosα =

y√
b2 + y2

,

and the natural equation (11.13) gives the classical formula for the arclength L of
the exponential y = ex/b between (x2, y2) and (x1, y1), where y1 > y2:

L =
√

b2 + y21 −
√
b2 + y22 + b log

√
b2 + y22 + b

y2(
√

b2 + y21 + b)
.

Parabola.

Figure 11.6a shows a portion of a parabola y = x2 above the interval [0, x]. We take
the parabola as tangency curve τ and the x axis as free-end curve σ. The tangent
segment from τ at (x, x2) to σ has subtangent x/2. From this property, we have
already shown in two different ways (using Figures 11.6a and 11.6b) that the area of
the parabolic segment between τ and σ is x3/3. (See Chapter 1, where the general
power function y = xn is also treated without integration.)

xx/2

(x, x  )2

β

t

0
α

x

β

t0
α

l l

β = α 

x2 x2

(x, x  )2

(a) (b)

β =    − απ
2

σ

σ

Figure 11.6: Two methods for calculating the arclength of a parabola.

Now we calculate the arclength traced by a point moving along the parabola
from the origin to (x, x2). To demonstrate the flexibility in the choice of free-end
curve, Figures 11.6a and b illustrate two different ways for calculating the arclength.
In both cases, α denotes the angle between the tangent at (x, x2) and the x axis,
but in Figure 11.6b the free-end curve σ is chosen to be the negative y axis.

In the backward formula (11.4) for arclength, t(α) tanβ appears in the integrand.
To express t(α) tanβ in terms of α, note that in Figure 11.6a we have β = π/2−α,
and hence tan β = cot α. Also, tan α = x2/(x/2) = 4(x/2) = 4t(α) cosα, so that

t(α) =
tanα

4 cosα
, and t(α) tanβ =

1

4 cosα
.
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342 Chapter 11. ARCLENGTH AND TANVOLUTES

Now we use (11.4) with l(0) = t(0) = 0 and we find that the arclength of the
parabola is given by

l(α) = t(α) +
1

4

∫ α

0

dθ

cos θ
=

1

4
(
tanα

cosα
+ log

1 + sinα

cosα
). (11.14)

Figure 11.6b leads to the same formula for arclength. Now β = α and t(α) has
twice the value in the foregoing calculation. In this case t(α) > l(α) and a sign
change is required in (11.14). We omit the details.

The arclength of a parabola was first found by Isaac Barrow, who used a different
method and expressed the result in an equivalent form involving α/2. Again, (11.14)
represents the natural equation for the parabola.

In terms of x, the length L(x) of the parabolic arc from the origin to (x, x2) is

L(x) = |1
2
x
√
4x2 + 1 +

1

4
log(2x+

√
4x2 + 1)|.

Cycloid.

For the arclength of a cycloid, refer to Figure 11.7b. (Figure 11.7a was used in
Chapter 2 to find the swept area.) The tangency curve τ is a cycloid, and the

α

l

D

t(α)

β
M

P θ

O

P

TA

D

O C

M

r

C
(a) (b)

T

Figure 11.7: Length of cycloidal arc PM is twice that of tangent segment PT .

free-end curve is chosen as a horizontal line tangent to the highest point M of the
cycloid, at distance D above the base. The tangent length t(α) is one leg of a right
triangle inscribed in a semicircle of diameter D, so t(α) = D cosα. Now β = α and
t(α) tanβ = D sinα, and (11.2) becomes

l(α) = D −D cosα+D

∫ α

0

sin θ dθ,

which leads to the following simple formula for the arclength OP :

l(α) = 2D(1− cosα) = 2D − 2t(α). (11.15)
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In particular, when α = π/2, arclength OM is 2D, a result discovered by Christo-
pher Wren. The general formula for l(α) implies that arclength PM , which is
2D − l(α), is twice the length t(α) of tangent segment PT .

In Figure 11.7b, D = 2r, where r is the radius of the rolling disk that traces
the cycloid. Denote by L(θ) the length of cycloidal arc OP in terms of the angle of
turn θ of the rolling disk. Then the formula for arclength OP becomes

L(θ) = 4r(1− cos
θ

2
). (11.16)

Epicycloid and hypocycloid.

For the arclength of an epicycloid, refer to Figure 2.10 in Chapter 2. In this case,
α = κβ, where κ = 1+ 2r/R. In Figure 2.10 the tangency curve τ is the epicycloid
and the free-end curve σ is the circular arc of radius R + 2r. We see that PT =
t(α) = 2r cosβ and the integrand in (11.2), when expressed in terms of β, becomes
2rκ sinβ dβ. Now β = θ/2, where θ is the angle of turn of the rolling disk of radius
r. In terms of θ we find that the length L(θ) of the epicycloidal arc OP in Figure
2.10 is

L(θ) = 4r(1 +
r

R
)(1− cos

θ

2
). (11.17)

For a hypocycloid, in which the circle of radius r rolls inside the circumference of
the fixed circle of radius R as in Figure 2.11, the formula for arclength is similar to
(11.17), with the factor (1+r/R) replaced by (1−r/R). When R =∞ both reduce
to (11.16) for a cycloid.

It is of interest to note that the sum of the arclength of an epicycloid and of
its complementary hypocycloid is twice that of the cycloidal arc in (11.16). This
can be regarded as a limiting case of the corresponding property of complementary
trochogonal curves obtained in Section 3.14 by an elementary method.

11.6 CLASSICAL INVOLUTE AND EVOLUTE

Consider a family of normals to a given curve σ, as in Figure 11.8. Their envelope
τ is called the evolute of σ, and σ, in turn, is called the involute of τ . We choose
τ as tangency curve and σ as free-end curve. Because β = 0, the integral in (11.4)
vanishes and we find

l(α)− l(0) = t(α)− t(0). (11.18)

If we take l(0) = t(0) = 0, (11.18) becomes

l(α) = t(α). (11.19)

This verifies the intuitively apparent fact that if a taut inelastic string is unwrapped
from a point O on τ , its free end will trace the involute σ.

Because t(α) = l(α), the area A(α) of the region between the evolute and invo-
lute swept by the tangent as it moves from O to P is

A(α) =
1

2

∫ α

0

l2(θ)dθ. (11.20)

ApostolGeoChapter 11_v2.indd   13ApostolGeoChapter 11_v2.indd   13 10/3/12   11:34 AM10/3/12   11:34 AM



344 Chapter 11. ARCLENGTH AND TANVOLUTES
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evolute τ

Figure 11.8: Classical involute-evolute relations.

Formula (11.6) for the free-end curve gives the arclength of the involute:

s(α) =

∫ α

0

l(θ)dθ. (11.21)

From (11.21) we can find the arclength l of the evolute τ in terms of s by differen-
tiation with respect to α:

l(α) = s′(α). (11.22)

Thus, the traditional involute-evolute relations (11.18), (11.20), and (11.21) are
merely special cases of our basic relations when t(α) is chosen to be l(α), the
arclength of the tangency curve.

Involute of a circle.

Figure 11.9a shows the special case in which the tangency curve τ is a circle of radius
r. Here t(α) = rα, where α is measured counterclockwise with α = 0 at O. Now
use (11.21) with l(α) = t(α) = rα to obtain s(α) = 1

2rα
2. This intrinsic equation

expresses the arclength of the involute of a circle in terms of the unwrapping angle.
Figure 11.9b shows the tangent cluster of the tangent sweep in Figure 11.9a. Its
boundary is an Archimedean spiral because the polar radius is proportional to
angle α. Let A(α) denote the area of the region swept by the polar radius rθ of
an Archimedean spiral as θ varies from 0 to α. Formula (11.20) for the area swept
between the circle and its involute implies

A(α) =
1

2

∫ α

0

(rθ)2 dθ =
1

6
r2α3. (11.23)

This can be written as 1
3 (R

2α/2), where R = rα. This result, which was found
by Archimedes, states that the area of the region swept by the polar radius of an
Archimedean spiral is one-third the area of the circular sector whose radius is the
final polar radius of the spiral.
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t = r α
α

Figure 11.9: (a) Tangent sweep between a circle and its involute. (b) Its tangent cluster
is bounded by an Archimedean spiral.

The formulas for the arclength and area of the involute of a circle were obtained
differently in Chapter 3 in (3.46) and (3.47).

Evolute of a tractrix.

Figure 11.10a shows a tractrix and an arc OP of its evolute. If a string lying along
the evolute is unwrapped from O, its free end traces a portion of a tractrix joining
point O to point T . The tangent segment from the tractrix at T to the base line
AX has constant length k, which is equal to the height of O above AX. We shall
determine the length l of arc OP , and the area of the ordinate set OAXP between
the evolute and the base AX.

According to (11.22), l(α) = s′(α), where s is the arclength of the involute, the
tractrix in this case, which we have calculated in (11.12). Renaming l in (11.12) as
s we find, by differentiation, s′(α) = k tanα, so arclength l = l(α) of the evolute is

l(α) = k tanα. (11.24)

Next we show that the area of ordinate set OAXP is equal to that of rectangle
TPT ′X in Figure 11.10b, with vertical diagonal XP and edges of lengths k and l.
Region OAXP consists of three parts: OAX swept by tangent segments of length
k to the tractrix, OTP swept by tangent segments of variable length l(α) to the
evolute OP , and triangle PTX.

Divide triangle PT ′X into two regions, a circular sector PA′T ′, and region
A′XT ′. Sector PA′T ′ is the tangent cluster of OAX, the tangent sweep of the
tractrix, so they have equal areas. Region A′XT ′ is swept by tangent segments
to the circular arc A′T ′, which are obtained from tangent sweep OTP by parallel
translation of each tangent segment from the evolute. Therefore both swept regions
A′T ′X and OTP have the same tangent cluster, so they have equal areas.

Thus, the sum of the areas of the two shaded regions on the left of the diagonal
PX is equal to the area of the shaded triangle PT ′X on the other side of the
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Figure 11.10: (a) The evolute of a tractrix. (b) Proof that area of the ordinate set OAXP
is that of rectangle TPT ′X. This implies that the evolute of a tractrix is a catenary.

diagonal. By adding the area of the common unshaded triangle PTX we find

area of ordinate setOAXP = area of rectangleTPT ′X = kl(α), (11.25)

where l(α) is given by (11.24).

The same formulas (11.24) and (11.25) were obtained differently in (3.51) and
(3.50) in Chapter 3 as the arclength and area formulas for a parabolic catenary.

Catenary as evolute of a tractrix.

Now we use our results for arclength and area to deduce the known fact that the
evolute of a tractrix is a catenary, the shape of a uniform flexible chain that hangs
under its own weight. Arclength formula (11.24) and area formula (11.25) together
show that ∫ x

0

y(u) du = k2y′,

which, when differentiated, gives y = k2y′′. The unique solution to the differential
equation with y(0) = k and y′(0) = 0 is

y = k cosh
x

k
= k

ex/k + e−x/k

2
. (11.26)

This is the cartesian equation for the catenary, and (11.24) is its natural equation.

Formulas (11.24) and (11.25) for arclength and area can also be expressed in
terms of hyperbolic functions. Let L(x) denote the arclength of the catenary from
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(0,k) to (x, y), and let A(x) denote the area of the corresponding ordinate set. Then
(11.24) and (11.25) give us the classical formulas

L(x) = sinh
x

k
, and A(x) = k2 sinh

x

k
,

where sinhx = (ex − e−x)/2 is the derivative of cosh x.
Also, (11.25) tells us that the area of the ordinate set between the catenary and

the interval AX is equal to the arclength l(α) multiplied by the height k of the
catenary’s lowest point above AX, and, by (11.24), it is also equal to k2 times the
slope of the tangent line at P . Moreover, the ordinate XP of the catenary is equal
to k/ cosα.

The catenary is well known as the shape of a uniform flexible chain that hangs
under its own weight. The standard proof of this makes use of a triangle of equi-
librium of forces that is similar to triangle PTX in Figure 11.10a.

We can derive the arclength of the tractrix in (11.12) from the natural equation
of the catenary in (11.24). Choose again the tractrix as the free-end curve with the
catenary as tangency curve, and use (11.6), taking β = 0 and t(α) = l(α) = k tanα.

Generalized pursuit curve.

Figure 11.11a shows a tangency curve τ and a horizontal free-end curve σ. At a
general point of τ a tangent segment of length t(α) cuts off a subtangent of length
b(α). For a tractrix, t(α) is constant, and for an exponential, b(α) is constant. Now
we consider the more general case, treated earlier in Section 1.17, in which a convex
combination of t(α) and b(α) is constant, say

μt(α) + νb(α) = C, (11.27)

for some choice of nonnegative μ and ν, with μ+ ν = 1. If ν = 0, τ(α) is constant
and the tangency curve τ is a tractrix, which can be regarded as a pursuit curve.
If μ = ν then t(α) + b(α) is constant, and τ is another pursuit curve in which a fox
running on σ is pursued by a dog on τ having the same speed as the fox. Because
of these examples, we refer to any curve satisfying (11.27) as a generalized pursuit
curve.

Now we will show once more that the tangent cluster of a generalized pursuit
curve is bounded by a conic section with eccentricity ν/μ and a focus at the common
point F of the translated segments. An example is shown in Figure 11.11b.

In Figure 11.11a we have β = α and b(α) = t(α) sinα. Let D = t(0) and let
e = ν/μ, where μ �= 0. Then b(0) = 0 and (11.27) implies

t(α) =
D

1 + e sinα
. (11.28)

This is the polar equation with radial distance t(α) of a conic with eccentricity e
and focus at F .

Thus, the area of the tangent sweep in Figure 11.11a is equal to that of the
corresponding tangent cluster in Figure 11.11b, a sector of a conic section swept by

ApostolGeoChapter 11_v2.indd   17ApostolGeoChapter 11_v2.indd   17 10/3/12   11:34 AM10/3/12   11:34 AM



348 Chapter 11. ARCLENGTH AND TANVOLUTES
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D
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Figure 11.11: (a) Generalized pursuit curve: μt(α) + νb(α) = C. (b) Tangent cluster of
tangent sweep in (a) is a focal sector of a conic section.

a focal radius. This is analogous to the Keplerian sector swept by the radius vector
from the sun to an orbiting planet. We have found the area of the shaded region
below the pursuit curve without knowing any equation that describes the curve. Its
natural equation will be derived in (11.30) and (11.31).

As Figure 11.11a suggests, the distances t(α) and b(α) are asymptotically equal
as α→ π/2. From (11.27) and (11.28) we find that the asymptotic pursuit distance
is t(π/2) = C = Dμ.

Now we determine the arclength l of τ from the forward formula (11.2). Using
(11.28) and t(0) = D in (11.2) we find

l(α) =
De sinα

1 + e sinα
+D

∫ α

0

sin θ

(1 + e sin θ)(cos θ)
dθ. (11.29)

The substitution u = sin θ converts the integral in (11.29) into

∫ sinα

0

u

(1 + eu)(1− u2)
du.

Partial fraction decomposition requires us to consider two cases, e = 1 and e �= 1.
Case e = 1

In this case the integrand is given by

1

4
(

1

1 + u
− 2

(1 + u)2
+

1

1− u
),

and (11.29) yields the intrinsic equation for the arclength of a classical pursuit curve:

l(α) =
D sinα

2(1 + sinα)
+

D

4
log

1 + sinα

1− sinα
. (11.30)
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In this case, using (11.6), we find that s(α) is equal to l(α) as given by (11.30).
This is to be expected because the dog and fox have equal speeds.

Case e �= 1

In this case (11.29) leads to an intrinsic equation for the arclength of a general-
ized pursuit curve:

l(α) =
De sinα

1 + e sinα
+

D

2
(

1

e− 1
log

1 + sinα

1 + e sinα
− 1

e+ 1
log

1− sinα

1 + e sinα
). (11.31)

It can be shown (as expected) that (11.30) is a limiting case of (11.31) as e→ 1.

The exponential curve corresponds to μ = 0 in (11.27), or the limiting case
e → ∞. By considering l(α) − l(α0) in (11.31) and letting e → ∞ in such a way
that D/e → b, (where b is the constant subtangent of the exponential) we are led
once more to (11.13). For e > 1 the conic (11.28) is a hyperbola, which, when
e → ∞, degenerates into a line at distance b from the focus. This line appears as
the dashed vertical line in the cluster triangle in Figure 1.23, where the common
cluster point F is at distance b from the line and serves as the focus of the degenerate
hyperbola.

In the generalized pursuit curve (11.27), σ is the x axis and β = α. Hence,
as mentioned earlier, we can use (11.6) to calculate s(α) and obtain parametric
equations for the rectangular coordinates of any point on the pursuit curve τ .

PART 2: TANVOLUTES

11.7 TANVOLUTES

This chapter began with a tangency curve τ and a tangent vector of length |t(α)|
whose endpoint traces a free-end curve σ as the vector moves along τ at tangency
angle α. The arclength functions l(α) for τ and s(α) for σ are connected by ba-
sic equations (11.3) and (11.5), in which the parameter β (also a function of α)
represents the complement of the angle between the tangents to τ and σ.

The classical involute-evolute relations in Section 11.6 came from treating the
special case β = 0 and t(α) = l(α). The involute σ is traced by the free end of a
taut inelastic string unwrapped from tangency curve τ so that it travels along the
tangent to σ. Figure 11.12a shows a classical involute-evolute pair (σ, τ).

In the rest of this chapter we unwrap an elastic string, as suggested in Figure
11.12b, by changing its length in such a way that its free end moves at a constant
angle β with the normal to the string, which is tangent to the involute through that
point. We refer to β as the angle of attack, terminology borrowed from aerodynam-
ics. In general, β can vary from point to point, but when β is constant we call the
resulting free-end curve, which depends on β, a tanvolute, or more specifically, a
β-tanvolute, and we denote it by σβ . The word “tanvolute” is a blending of tangent
and volute.

It suffices to assume that −π
2 < β < π

2 . When β = 0, the tanvolute σ0 is
the classical involute of τ . As β increases from −π/2 to 0, the tanvolutes form a
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Figure 11.12: (a) Classical involute of τ . (b) Tanvolute of τ formed by unwrapping an
elastic string from τ so that its free end moves at a constant angle of attack β.

one-parameter family intermediate to the tangency curve and its involute σ0. As
β continues to increase from 0 to π/2 the tanvolutes form another one-parameter
family of curves expanding outward beyond the involute as indicated by the example
in Figure 11.12b.

Figure 11.12a shows a classical involute of τ , and Figure 11.12b shows two β-
tanvolutes of τ corresponding to two values of β of opposite sign.

Figure 11.13 shows examples of tanvolutes that occur in a well-known pursuit
problem. Here n ants start at the vertices of a regular n-gon, each ant pursuing

30°

2

1

2

1

1

2

τ

σ

τ σ

τ σ

(a) (b) (c) 

β = 30°β = 0 β =−30°

Figure 11.13: Pursuit problem with n ants at the vertices of a regular n-gon. While ant
1 pursues ant 2, ant 2 traces the β-tanvolute of the path of ant 1.

its nearest clockwise neighbor at the same speed. At any time, the ants are at the
vertices of a smaller similar rotated n-gon, shown for n = 4, 3, and 6 in Figure
11.13. In each case, ant 1 traces a (logarithmic) spiral τ toward the center, while its
neighbor, ant 2, traces the β-tanvolute of τ with constant β (by similarity), given
by β = 2π

n − π
2 radians. A new application to pursuit problems is in Section 11.13.
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As we show later, a logarithmic spiral can be regarded as the tanvolute of a
single point. Thus, tanvolutes also generalize the logarithmic spiral with its pole
replaced by a curve.

11.8 BASIC FUNCTIONS AND THREE BASIC PROBLEMS

In the rest of this chapter, we consider a curve τ (the tangency curve), together with
a moving tangent line. The moving tangent point on τ is described by a position
vector x, as indicated in Figure 11.14. Denote by l = l(α) the arclength function
of τ , where α is the angle, measured counterclockwise, between the moving tangent
and some initial direction, chosen so that l(0) = 0. As the point of tangency
moves continuously along τ , we assume that the tangent vector angle α changes
monotonically, increasing when the tangent turns counterclockwise. As α varies
from −∞ to +∞, the arclength function can be positive or negative. The absolute
value |l(α)| tells us how far the point of tangency moves along τ when the turning
angle changes from 0 to α.

The derivative dx/dl = T, the unit tangent vector. The derivative of T, in turn,
is given by dT/dl = κN, where κ = dα/dl is the curvature, and N is the principal
unit normal, as in Figure 11.14.

β

t(α)

s

l

tangency
curve τ

free-end curve σ

T

N x

y

dy/dl

Figure 11.14: Tangency curve τ described by position vector x, and free-end curve σ
described by position vector y = x− tT, where T is the unit tangent vector of τ .

Denote by t = t(α) the function whose absolute value is the length of the tangent
vector from τ to the free-end curve σ. The vector y = x− tT is the position vector
of the curve σ, as shown in Figure 11.14. Denote by s = s(α) the corresponding
arclength function of σ with respect to angle α, measured so that s(0) = 0. Unlike
l(α), which gives an intrinsic description of τ , the function s(α) does not always
provide an intrinsic description of σ because α is not necessarily the angle swept
by the tangent to σ. In this chapter we assume that the functions l, t, and s are
continuously differentiable.

At each point where the tangent intersects σ, let β denote the angle of attack
as described earlier, with |β| < π/2. For tanvolutes, β is constant. But in Sections
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352 Chapter 11. ARCLENGTH AND TANVOLUTES

11.9 and 11.19, we allow β to vary from point to point and regard β as a function
of α.

We relate the four functions β, t, l, and s through two differential equations in
Theorem 11.1. When β is constant, we treat three problems in which we specify
one of t, l, s and determine the other two.

11.9 BASIC DIFFERENTIAL EQUATIONS

Theorem 11.1. The four functions l, s, t, and β are related by the differential
equations

dt

dα
− dl

dα
= t tanβ, (11.32)

and
ds

dα
=

t

cosβ
. (11.33)

This theorem was proved in Section 11.3 by a graphical method using linear
approximations to the curves. Here we give a brief analytic argument.

Proof. Refer to Figure 11.14, where x is the position vector of the moving point
of tangency on τ , and y = x−tT is the corresponding position vector of the free-end
curve σ. Differentiation with respect to l gives

dy

dl
= (1− dt

dl
)T− tκN = κ[(

dl

dα
− dt

dα
)T− tN]. (11.34)

The vector dy/dl, shown tangent to σ in Figure 11.14, is the sum of two perpendic-
ular vectors, one parallel to T and another parallel to N in the directions indicated.
The three vectors form a right triangle, with angle β adjacent to the hypotenuse.
From this triangle and (11.34) we deduce (11.32). Because the length of dy/dl is
ds/dl, the same triangle shows that (ds/dl) cosβ = κt. But ds/dl = κds/dα, and
we obtain (11.33).

11.10 CONSTANT ANGLE OF ATTACK: β-TANVOLUTES.

In general, β can vary with α, but for tanvolutes we keep β constant. Then as the
tangent to τ sweeps through angle α, the corresponding tangent to the β-tanvolute
sweeps through the same angle, as shown in Figure 11.15. This geometric property
plays an important role in the analysis because, for constant β, the arclength s
yields an intrinsic description of σβ .

For constant β, we introduce constants c and γ, where

c = tanβ and γ =
1

cosβ
.

Then the differential equations (11.32) and (11.33) become linear in t, l, and s:

dt

dα
− dl

dα
= ct, and

ds

dα
= γt.
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Figure 11.15: For constant β, when the tangent to τ sweeps through angle α, the corre-
sponding tangent to the β-tanvolute sweeps through the same angle α.

As mentioned earlier, we treat three problems, in which we specify one of the
functions and determine the other two. The first specifies l and determines t and
s, which we denote as tβ and sβ . The other two are in Sections 11.14 and 11.15.

11.11 PROBLEM 1: FINDING β-TANVOLUTES OF A GIVEN CURVE

Problem 1. For a constant β, a function l with l(0) = 0, and a real T , determine
tβ and sβ satisfying (11.32) and (11.33) with initial conditions

tβ(0) = T, sβ(0) = 0.

Solution. The differential equation (11.32) is first-order linear for tβ with solu-
tion

tβ(α) = l(α) + Tecα + cecα
∫ α

0

l(θ)e−cθdθ. (11.35)

(We use the notation c and γ from the foregoing section.) Once tβ is known we
can determine sβ by integrating γtβ , as suggested by (11.33). However, to avoid
integrating an integral, we determine sβ differently. First use (11.33) to replace
tβ(α) on the right of (11.32) and obtain the following version of (11.32):

dtβ
dα

=
dl

dα
+

c

γ

dsβ
dα

.

Integrate this over the interval [0, α] and use the initial conditions to get

tβ(α)− T = l(α) +
c

γ
sβ(α). (11.36)

If β = 0, then c = 0, γ = 1, (11.36) becomes t0(α) = T + l(α), and s0(α) is
obtained by integration:

s0(α) = Tα+

∫ α

0

l(θ)dθ. (11.37)
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If β �= 0, then c �= 0 and we can solve for sβ(α) in (11.36), and use (11.35) to
obtain

sβ(α) = γT
ecα − 1

c
+ γecα

∫ α

0

l(θ)e−cθdθ. (11.38)

When c→ 0 in (11.38) we get (11.37) as a limiting case. Thus, (11.35) and (11.38)
provide the solution to Problem 1.

The rightmost term in each of (11.38) and (11.35) contains the convolution
integral

I(α) =

∫ α

0

l(θ)ec(α−θ)dθ, (11.39)

hence (11.38) and (11.35) can also be written, respectively, as

sβ(α) = γT
ecα − 1

c
+ γI(α), (11.40)

and
tβ(α) = l(α) + Tecα + cI(α). (11.41)

When α = 0, these give us sβ(0) = 0 and tβ(0) = T , as expected. The free endpoint
of the string starts at distance |T | from the tangency curve. We always take α = 0
in the direction of the initial tangent to the tanvolute.

Figure 11.16 shows the shape of β-tanvolutes for values of β near the extremities
of the interval [−π/2, π/2]. In Figure 11.16a, β is negative and nearly −π/2, while

(c) (a)   β  =−80 °

θ > 0
θ < 0

(b)   β  = 80 °

θ > 0
θ < 0T β     −π/2

β     π/2
T T 

Figure 11.16: Behavior of β-tanvolute when β is near the extreme values ±π/2.

in Figure 11.16b, β is near π/2. Figure 11.16c shows the limiting behavior as
β → ±π/2; the tanvolute becomes a tangent ray to τ and then wraps around τ .

11.12 EXAMPLES ILLUSTRATING PROBLEM 1

Next we consider examples for which the convolution integral I(α) in (11.39) is
easily evaluated. We begin with a circle, whose arclength function is linear in α.

Example 1 (Tanvolutes of a circle). For a circle of radius r the arclength
is l(α) = rα, and (11.39) becomes

I(α) = recα
∫ α

0

θe−cθdθ = r
ecα − 1

c2
− rα

c
,

which, when used in (11.40) and (11.41), gives us the formulas

sβ(α) = γ(T +
r

c
)
ecα − 1

c
− γrα

c
, (11.42)
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11.12. EXAMPLES ILLUSTRATING PROBLEM 1 355

tβ(α) = Tecα + r
ecα − 1

c
. (11.43)

Classical case: Involute of a circle.

When β = 0, (11.36) and (11.37) yield

t0(α) = T + rα, and s0(α) = Tα+
1

2
rα2. (11.44)

Figure 11.17 shows how the involute of a circle depends on T .

(c)(b)(a)

T

d
d

T = 0

Figure 11.17: Involutes of a circle depending on T . (a) When T = 0 the involute has
two branches spiraling outward symmetrically from the point of contact on the circle. (b)
When T > 0, the involute is a rotated version of that in (a), spiraling outward from a
different point on the circle. (c) Bird’s eye view showing one of the spirals with constant
spacing between its arms.

Special tanvolute: No exponential influence.

In (11.42) and (11.43), the exponential term ecα disappears when T = −r/c. For
this value of T , which we label T∗, we denote the arclength function in (11.42) by s∗β
and the corresponding tanvolute by σ∗

β , which we call a special tanvolute. Because
c/γ = sinβ, from (11.42) we find s∗β(α) = Rβα, where Rβ = −r/ sinβ. Hence the
special tanvolute σ∗

β is a concentric circle, shown in Figure 11.18b, of radius

R∗ =
r

| sinβ| . (11.45)

General tanvolute of a circle.

Next we analyze (11.42) for large |α| when the exponential terms are present (which
implies β �= 0). Either the exponential term dominates (when cα > 0), or it tends
to 0 (when cα < 0), in which case the linear term dominates. Geometrically, this
means that a general tanvolute spirals away from the original circle in unbounded
fashion in one direction, and tends asymptotically to the special circular tanvolute
in the other direction. Figure 11.18 gives examples with β = −30o, so c < 0.
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356 Chapter 11. ARCLENGTH AND TANVOLUTES

T
β

r r

βββ

R Rr

(a) T<T (b) T=T (c) T>T

R
ββ

*

*

* * 

* * * 

Figure 11.18: Here β = −30o. (a) When T < T∗, the tanvolute spirals outward, toward
the special circular tanvolute if cα < 0, but in unbounded fashion if cα > 0. (b) When
T = T∗, the tanvolute is the special tanvolute. (c) For T > T∗, the tanvolute spirals inward
toward the special tanvolute if α > 0, but spirals outward in unbounded fashion if α < 0.

Example 2 (Tanvolutes of a single point are logarithmic spirals). Now
we take the tangency curve to be a single point O, which can be regarded as the
limiting case of a small circular arc τ whose radius shrinks to zero. As r → 0 in
(11.42) we find that the arclength function of the tanvolute is

sβ(α) =
T

sinβ
(ecα − 1). (11.46)

The coefficient T/ sinβ in (11.46) has a simple geometric meaning. Let L denote
the arclength of the tanvolute between O (α = −∞) and the point on the tanvolute
where α = 0. From (11.46) we find L = sβ(0)− sβ(−∞) = T/ sinβ, and hence

sβ(α) = L(ecα − 1).

Similarly, (11.43) gives the limiting case tβ(α) = Tecα = L sinβ ecα, where tβ(α)
becomes the radial distance rβ(α) from point O to σβ . In general, the tanvolute
has polar equation

rβ(α) = Tecα,

where T = L sinβ. When β = 0, s0(α) = Tα, giving a circle of radius T , as in
Figure 11.19a. But when β �= 0, this is the polar equation of a logarithmic spiral,
shown in Figure 11.19b for β > 0. This agrees with the geometric definition of a
logarithmic spiral as a curve cutting all its polar radial lines at a constant angle of
attack.

Figure 11.19c shows the region between the spiral arc OA of length L and
the initial segment OA, dissected into tiny triangles with equal vertex angles (as
Archimedes did with a circular disk) and unfolded to fill part of right triangle AOB.
This shows geometrically why AB has length L and why the region between the
spiral arc OA and the initial tangent has area equal to half that of triangle OAB,
a known result that can also be verified analytically.
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β
L=T/ sin β

T 

β = 0 

( a)  (b)  

L   
β

O 

O 
T 

β

O 

T 

O 

β

L   

T 

L   
β

A 

A 

A 

(c)  

B 

B 

B 

Figure 11.19: Tanvolutes of a single point: (a) Circle as involute. (b) Logarithmic spiral
as a β-tanvolute. (c) Arclength and area obtained geometrically by an unfolding process.

Further examples illustrating Problem 1 are described in Section 11.17. They
include tanvolutes of a logarithmic spiral, tanvolutes of the involute of a circle, tan-
volutes of cycloids, epicycloids, and hypocycloids. Discussion is also given there of
the relation between the initial tangent T and the resulting shapes of the tanvolutes.

11.13 TANVOLUTES APPLIED TO PURSUIT PROBLEMS

We turn now to an application generalizing a remarkable pursuit problem that
appears in the literature in various forms and under various names, e.g., the trawler
problem, the rum-runner problem, or the anti-missile problem (Exercise 16 in [1;
p. 544]). The problem is of special interest because at first glance it seems that
the given information is insufficient to solve it. We shall generalize all forms as an
anti-missile problem, and solve it with the help of tanvolutes.

S

S

(a) (b) 

Figure 11.20: (a) Horizontal missile track on a mountain. (b) Top view showing the track
as a convex tangency curve. The tangent vectors indicate possible directions of missile 1.

Generalized pursuit problem.

A military base is equipped with a horizontal convex track around a mountain
(Figure 11.20a), along which a missile can fly (clockwise) at constant speed v and
can be aimed, at the same speed v, toward a target along a line tangent to the track
(Figure 11.20b). A missile, mistakenly fired, starts at point S and flies along the
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358 Chapter 11. ARCLENGTH AND TANVOLUTES

track to an unknown point on the track from which it proceeds along the tangent
direction, which is also unknown (Figure 11.20b). To destroy the first missile, an
anti-missile missile is fired from S exactly two seconds later at constant speed V > v.
Unlike the first missile, the second missile can fly along any path.

What path should the second missile follow to overtake the first one?

First, we try to determine where missile 1 could be at any moment. In Figure
11.21a, suppose that, at a particular moment, missile 1 has moved a distance a
along the base track plus a distance b along the unknown direction of tangency. At
that moment, missile 1 lies somewhere on the involute to the tangency track along
which a + b is constant, as though a string of length a + b is unwrapped from the
track. The dashed curves in Figure 11.21a show how the involutes expand uniformly
with time.

(a)

base

(b)

β

β-tanvolute

P

S

v

V

S

C

β

Q

β

β

t

s

l

F

Figure 11.21: (a) The possible time-loci of missile 1 are involutes of the base track,
expanding uniformly with time. (b) Missile 2 proceeds to point P on the base track where
interception would occur if missile 1 was still on the track, and then follows the β-tanvolute
of the track.

There are several strategies available to overtake missile 1. The simplest assumes
that missile 1 travels from the starting point S and moves a distance SQ along the
track to an unknown point Q, then proceeds along the tangent at Q, as in Figure
11.21b. Then missile 2 travels along the track from S to the point P where missile
1 would have been had it stayed on the track. Point P can be determined because
the missile speeds v and V are known.

If missile 2 hits missile 1 at P , the pursuit is over. Otherwise, missile 2 changes
course and moves from P along a β-tanvolute, which will intersect all the tangent
lines along which missile 1 might travel. Of course, we need to choose β so that
missile 2 collides with missile 1 at some point, denoted by C in Figure 11.21b. The
small triangle suggests that β should be chosen so that sin β = v/V . The reason
is that missile 1 moves tangentially a distance v in unit time while missile 2 moves
along the β-tanvolute a distance V , forming a leg and hypotenuse of a small right
triangle with adjacent angle whose sine is v/V . This is the angle of attack β.

We can also obtain this choice of β analytically. Missiles 1 and 2 are to reach C
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11.14. PROBLEM 2 359

simultaneously. Missile 1 travels the distance SQ along the track plus the distance
tβ(α) along the tangent ray. The time required to cover the distance at constant
speed v is

SQ+ tβ(α)

v
.

Now, missile 2 travels the distance SP from S to P , then the distance sβ(α) from
P to C, where α is measured so that α = 0 at P . The time required to cover the
distance at constant speed V is

SP + sβ(α)

V
.

Because missile 2 is fired later than missile 1, say the time delay is Δ, collision will
occur at C if

Δ +
SP + sβ(α)

V
=

SQ+ tβ(α)

v
. (11.47)

But Δ is the difference in times required for the two missiles to travel from S to P :

Δ =
SP

v
− SP

V
.

Use this in (11.47), together with SQ = SP − l(α). Then (11.47) becomes

sβ(α)

V
=

tβ(α)− l(α)

v
.

Comparing this with (11.36), with T = 0, we find

v

V
=

c

γ
= sinβ,

the same result suggested geometrically.
The pursuit problem can be solved similarly if missile 2 starts at a point off

the track (now the time delay is not necessary). Missile 2 proceeds directly to the
track and then follows the track to the point where missile 2 would hit missile 1
had missile 1 stayed on the track. If it hits, the pursuit is over. Otherwise, missile
2 follows the β-tanvolute at that point with sinβ = v/V . Collision will occur at
the latest at F in Figure 11.21b.

In the limiting case when the tangency curve τ reduces to a single point, the
expanding involutes are concentric circles (see Figure 11.19a), and the problem
reduces to the classical anti-missile problem, or to the other two classical problems
mentioned earlier. In each, the β-tanvolute is a logarithmic spiral, the tanvolute of
a single point.

11.14 PROBLEM 2. FINDING TANGENCY CURVE WITH KNOWN
β-TANVOLUTE

In Section 11.11, we specified the function l in differential equations (11.32) and
(11.33) and solved for s and t, keeping β constant. Now we specify s, and determine
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360 Chapter 11. ARCLENGTH AND TANVOLUTES

t and l, which we denote by tβ and lβ . In other words, Problem 2 specifies the
β-tanvolute σβ , because it prescribes s and β, and asks for the tangency curve τ
(through its intrinsic equation l = l(α)), as well as the corresponding tangent length
function t. The geometric meaning of Problem 2 is illustrated in Figure 11.12b.

Problem 2. For constant β and a function s with s(0) = 0, determine tβ and
lβ satisfying (11.32) and (11.33) with initial condition

lβ(0) = 0.

Solution. We obtain tβ at once from (11.33), which gives

tβ = cosβ
ds

dα
.

Using this in (11.32) and integrating over the interval [0, α] we find

lβ(α) = tβ(α)− tβ(0)− sinβ s(α).

Expressed in terms of s, this becomes

lβ(α) = cosβ(s′(α)− s′(0))− sinβ s(α).

When β = 0 this gives l0(α) = s′(α)− s′(0), and the last equation becomes

lβ(α) = −s(α) sinβ + l0(α) cosβ. (11.48)

Thus, the arclength function lβ is a linear combination of the arclength functions for
σ and the curve whose involute is σ, which is known as the evolute of σ. Equation
(11.48) resembles the formula for rotating cartesian coordinate axes, except now the
intrinsic coordinates lβ(α) of the tangency curve τ are obtained from the intrinsic
coordinates of the involute and the tangency curve by a combination of rotation
and scaling.

Similarly, we find tβ(α) = t0(α) cosβ, which tells us that the length of the
tangent segment from the τ to the β-tanvolute is smaller than the tangent segment
from τ to the involute by a factor cosβ. The maximum tangent length occurs when
β = 0. Of course, each example illustrating Problem 1 also provides an example
illustrating Problem 2.

Evolutoids.

The tangency curve τ is the envelope of inclined normals to the tanvolute σβ ,
the constant angle of inclination being β. The problem of finding the envelope of
normals turned by a fixed angle to a given curve σ appeared in the literature in
work by Réaumur in 1709 and by Lancret in 1811. (See [54], p. 297.) In this earlier
work, the envelope is referred to as the evolutoid or developpoid of σ. For β = 0 the
evolutoid becomes the classical evolute of σ.

Réaumur was the first to show that the evolutoid of a circle is a concentric
circle. But apparently no one realized that many other curves have a given circle as
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11.15. PROBLEM 3 361

evolutoid. This is illustrated in Figure 11.18, which shows a family of β-tanvolutes
of a given circle, each tanvolute obtained by varying the initial tangent length T
but keeping β fixed. The circle is the evolutoid of each of these tanvolutes.

In the same way, for a tangency curve τ and any β, there is an infinite family
of β-tanvolutes, obtained by varying the initial tangent length T . All members of
the family have the same tangency curve τ as β-evolutoid but with different values
of T . The simplest tanvolute is the special β-tanvolute, for which T = T∗, so that
there is no exponential influence.

Figures 11.22a and 11.22b show the same cardioid (with interior shading) as
evolutoid of two different β-tanvolutes for the same β, the second being the special
β-tanvolute. In Figures 11.22b, c, and d, each of the smaller cardioids is an evolutoid
of the same larger cardioid for different values of β.

(d) β = 0º(b) β =−30º(a) β =−30º (c) β =−12º

T T*

Figure 11.22: (a) General β-tanvolute of a cardioid. (b) Special tanvolute of the same
cardioid for the same β. In (b), (c) and (d): The large cardioid is the special β-tanvolute
of each smaller cardioid for three different values of β.

11.15 PROBLEM 3. FINDING β-TANVOLUTES WHEN t IS KNOWN

We turn next to the third in our trilogy of problems. For fixed β, this one specifies
t and determines both s and l, which we denote by sβ and lβ .

Problem 3. For constant β and a given function t with t(0) = T , determine
sβ and lβ satisfying (11.32) and (11.33) with initial conditions

sβ(0) = 0, lβ(0) = 0.

Solution. By integrating (11.32) and (11.33), using γ = 1/ cosβ and c = tanβ,
we find

sβ(α) = γ

∫ α

0

t(θ)dθ, and lβ(α) = t(α)− T − c

∫ α

0

t(θ)dθ.

This simple solution reveals a surprising geometric fact: A knowledge of the
tangent-length function t alone determines intrinsically both the tangency curve
and its β-tanvolute, except for their position and orientation in the plane. All
examples illustrating Problems 1 and 2 also illustrate Problem 3.

In particular, if t is constant, say t = T , we find sβ(α) = γTα and lβ(α) = −cTα,
each of which represents the arclength of a circle. If t(α) is a linear function of α,
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362 Chapter 11. ARCLENGTH AND TANVOLUTES

say t(α) = T + rα, where T and r are constants, then sβ(α) = γTα+ γrα2/2, and
lβ(α) = rα− crα2/2, each of which is the arclength of the involute of a circle.

11.16 GEOMETRIC BEHAVIOR OF β-TANVOLUTES

Now we return to constant β and analyze the geometric behavior of β-tanvolutes as
revealed by the explicit formulas for the functions sβ(α) and tβ(α) in (11.40) and
(11.41). We begin by pointing out some differences between tanvolutes with β �= 0
and classical involutes with β = 0.

The exponential influence.

The exponential influence ecα in these formulas is not present in the classical case
β = c = 0. In the nonclassical case, β �= 0, the exponential ecα appears implicitly
in the integral I(α) in (11.39), and also explicitly with a factor T in (11.40) and
(11.41). As might be expected, this has a profound effect on the shape of nonclassical
tanvolutes.

Canonical form.

In all examples treated in this paper, formula (11.40) for the arclength function
sβ(α) can be written so that the exponential factor ecα appears explicitly:

sβ(α) = Sβ(0)e
cα − Sβ(α). (11.49)

In the second term, Sβ(α) is a function of c and α that does not involve ecα explicitly.
And its initial value Sβ(0) is the coefficient of ecα in the first term! We call (11.49)
the canonical form of (11.40). Both Sβ(α) and Sβ(0) depend on the initial value T.

By differentiating (11.49) and using (11.33) we find

tβ(α) = (sinβ)Sβ(0)e
cα − (cosβ)

dSβ(α)

dα
, (11.50)

which we call the canonical form of (11.41).

Special tanvolutes with no exponential influence.

If Sβ(0) = 0 for some choice of T , there is no exponential term in (11.49), in which
case (11.49) becomes sβ(α) = S∗

β(α), where S∗
β(α) is the function −Sβ(α) with

Sβ(0) = 0.

We shall refer to the tanvolute having arclength function S∗
β as a special tanvo-

lute, and we denote it by σ∗
β , as was done earlier in Example 1 in treating tanvolutes

of a circle.

The canonical form (11.49) reveals the surprising fact that the arclength function
sβ(α) of a general tanvolute is a linear combination of an exponential term ecα and
the arclength function of a special tanvolute.

ApostolGeoChapter 11_v2.indd   32ApostolGeoChapter 11_v2.indd   32 10/3/12   11:34 AM10/3/12   11:34 AM



11.16. GEOMETRIC BEHAVIOR OF β-TANVOLUTES 363

For example, the arclength of the tanvolute of a circle as given in (11.42) can
be written in canonical form (11.49) with

Sβ(α) =
γ

c
(rα+ T +

r

c
), (11.51)

which represents the arclength function of a circle of radius R∗ = |γr/c| = r/| sinβ|.
In all our examples, a general tanvolute spirals away from the tangency curve

in an unbounded fashion in one direction, and tends asymptotically to the special
tanvolute in the other direction. The special tanvolute, in turn, is a scaled and
rotated version of the tangency curve.

Attached and detached tanvolutes.

If tβ(α) = 0 for some α we call the tanvolutes attached because the free end of the
string is actually on the tangency curve τ for that value of α. Examples for a circle
are shown in Figure 11.17 and in Figure 11.18a.

In Figures 11.17a, 11.17b, and 11.18a, the tanvolute has a cusp at the point of
contact with the circle. This happens with an attached tanvolute when β �= ±π/2.
From (11.33) we see that tβ(α) = 0 implies dsβ/dα = 0 when β �= 0. We note that
dsβ/dα is the radius of curvature of the tanvolute σβ , and a zero radius of curvature
produces a cusp.

If tβ(α) �= 0 for all α the tanvolute never touches τ and we call the tanvolute
detached. Examples for a circle are shown in Figures 11.18b and c.

As we will see in many examples, detached tanvolutes exhibit special behavior
that does not occur with attached tanvolutes.

The role of the initial value T .

For every β, our initial conditions require that sβ(0) = 0 and tβ(0) = T . The
initial value T , which can be positive, negative, or zero, can be regarded as a free
parameter in formulas (11.40) and (11.41). Geometrically, |T | represents the tail
of the string being unwrapped from τ . In classical treatments, conic sections are
examples of detached involutes with a tail, whereas cycloidal involutes are attached
with no tail. (See Figure 11.29a.) Treating T as a free parameter leads to more
flexibility in several ways. For example, in the case of attached tanvolutes, changing
T is equivalent to unwrapping the string from different points of tangency curve τ .

Also, for a given β, the tanvolute σβ depends on the initial value T , and we
indicate this dependence by writing σβ = σβ(T ). When the tanvolute is a spiral,
different choices of T can produce the same spiral. In fact, the line through the initial
tangent point intersects the spiral infinitely often at discrete points Tk = tβ(2πk),
where k is any integer, positive, negative, or zero. The same spiral σβ is traced as
tanvolute if we choose any Tk as initial value. This is equivalent to replacing α by
α′ = α+2πk in (11.40) and (11.41). For example, if k > 0 the portion of the spiral
beyond Tk is obtained by allowing α′ to increase (counterclockwise) from 0 to ∞.
The earlier portion of the spiral is traced by allowing α′ to decrease (clockwise)
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from 0 to −∞. This means that the same spiral σβ is traced for each initial choice
Tk. In symbols, σβ(T0) = σβ(Tk).

Now start with a spiral tanvolute σβ(T0) and choose a new initial value T in
any of the intervals Tk < T < Tk+1. As T varies through the interval, we obtain a
family of intermediate spiral tanvolutes σβ(T ). To avoid excessively large values of
T we usually choose T in the interval T0 < T < T1 or in the interval T−1 < T < T0.
As T increases we obtain the special tanvolute σ∗

β when T reaches a certain value
T∗, and as T increases further we might reach a critical value Tcr that marks the
transition between attached and detached tanvolutes. In the next section we will
see that these values coincide, (T∗ = Tcr), when τ is a circle or a logarithmic spiral,
as shown in Figures 11.19 and 11.23. Later we will see, in Figure 11.29 for example,
that some tangency curves do not have detached tanvolutes.

11.17 FURTHER EXAMPLES ILLUSTRATING PROBLEM 1

Example 3 (Tanvolutes of a logarithmic spiral). Start with a logarithmic
spiral with polar equation r = Teaα, where a is a positive constant given by a =
tan δ, and δ is the complement of the constant angle between the tangent to the
spiral and the radial line from the origin, so that δ plays the same role as β in
Figure 11.19b. (For example, in Figure 11.13, δ = π/n.) Its arclength l(α) has the
form l(α) = L(eaα − 1), where the constant L is the arclength of the portion of the
spiral from the origin to the point on the spiral where α = 0. This implies l(0) = 0.
Using this in the integrand for I(α) in (11.39) we find

I(α) =

∫ α

0

L(eaθ − 1)ec(α−θ)dθ = Lecα
∫ α

0

e(a−c)θdθ + L
1− ecα

c
.

If c = a this becomes

I(α) = Lαeaα + L
1− eaα

a
,

but if c �= a we have

I(α) = L
eaα − ecα

a− c
+ L

1− ecα

c
.

Using these in (11.40) we find the following formulas for the arclength of the tan-
volute of a logarithmic spiral:

If c = a, then

sβ(α) = γ(T − L)
eaα − 1

a
+ γLαeaα, (11.52)

but if c �= a, then

sβ(α) = γ(T − L)
ecα − 1

c
+ γL

eaα − ecα

a− c
. (11.53)

These formulas are based on unwrapping the tanvolute from the logarithmic spiral
in the counterclockwise direction, indicated by allowing α to increase from 0 to ∞.
We could just as well unwrap the tanvolute in the opposite direction, indicated
by allowing α to decrease from 0 to −∞. From (11.53), the special tanvolute
corresponds to T = La/(a − c) with S∗

β(α) = γL(eaα − 1)/(a − c). This is the
original logarithmic spiral scaled by γ/(a− c) and rotated by π/2 + β.
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Involutes of a logarithmic spiral.

Now let β → 0 in (11.53) and we get

s0(α) = (T − L)α+ L
eaα − 1

a
(11.54)

as the arclength function of the involute. When T = L the unwrapping takes place
from the origin and the arclength function reduces to s0(α) = L(eaα − 1)/a, which
is a scaled version of the arclength function of the original spiral. As α→ +∞ the
involute spirals outward, but as α → −∞ it spirals inward toward an asymptotic
circle of radius R = |L− T |. Examples are shown in Figure 11.23.

R

τ T  < L 

R

(a)   R=L −T (b)   R=0

L
O

(c) R=T −L

Attached DetachedCritical

O O

involute involute involute 

τ τT = L T  > L
0 0 0

Figure 11.23: Involutes of a logarithmic spiral for (a) T < L, (b) T = L, (c) T > L.

Tanvolutes of a logarithmic spiral.

Let E = T − La/(a − c). Figure 11.24 shows various attached tanvolutes of a
logarithmic spiral with β �= 0 and T = 0. The asymptotic behavior is obtained by
analyzing (11.52) and (11.53) when c = a and c �= a, respectively.

0<β<δβ<0

(a) c < 0 (b) 0  < c < a (c)  c = a

β=δ

(d) c > a

β>δ

e aα

e cα
(E=0)

e aα
αeaα

e aα e cα
(E=0)(E=0)

O

Figure 11.24: Attached β-tanvolutes of a logarithmic spiral for various values of β. Ex-
panding asymptotic behavior is marked on each graph.

Figure 11.25 shows tanvolutes for a logarithmic spiral with β < 0 and T > 0.
The asymptotic behavior depends on the relation between T and L, and can be
analyzed by using (11.52) and (11.53). We omit the details.
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β β β

0 0 

OO

0

O

(a) (b) (c) 

DetachedAttached  Critical/Special 

E = 0 E > 0E < 0

Figure 11.25: Tanvolutes of a logarithmic spiral with β < 0, T > 0. In (a) E < 0, in (b)
E = 0, and in (c) E > 0.

Example 4 (Tanvolutes of the involute of a circle). In Example 1 we
found the intrinsic equation of the involute of a circle of radius r to be

s0(α) = Tα+
1

2
rα2. (11.55)

If T = 0 this becomes an even function of α, and in that case the involute σ is
a symmetric curve with two branches meeting at a cusp at point O on the circle,
which corresponds to α = 0.

Now we use the involute of a circle as the tangency curve, with arclength function
l(α) given by the right member of (11.55) with T = 0, and determine its tanvolutes.
In this case the convolution integral in (11.39) is given by

I(α) = ecα
∫ α

0

1

2
rθ2e−cθdθ =

r

2
(−α2

c
− 2α

c2
+

2(ecα − 1)

c3
),

which, when used in (11.40) with a general T , gives us

sβ(α) = γ(T +
r

c2
)
ecα − 1

c
− γr(

α2

2c
+

α

c2
). (11.56)

Involutes of the involute of a circle.

If β → 0 then c→ 0, γ → 1, and the limiting case of (11.56) (see Figure 11.26) gives
the intrinsic equation for the involute of an involute of a circle: s0(α) = Tα+ r

6α
3.

(a) Attached,  T>0 (b)  Critical,  T= 0 (c) Detached,  T< 0

T

Figure 11.26: Classical case. Involutes of an involute of a circle.
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(b)  Critical,   T=0 (c)  Detached,   T>0(a)  Attached ,  T<0β = − 30°  

T

Figure 11.27: Tanvolutes of involute of a circle.

(a)    β= − 20° (b)    β =− 30° (c)    β = − 45°

T

β
β

β

Figure 11.28: Special tanvolutes of involute of a circle.

Tanvolutes of the involute of a circle.

The examples in Figure 11.27 show how the tanvolute depends on the initial value
T for a fixed β < 0.

Figure 11.28 shows tanvolutes with no exponential influence. To determine
them, write (11.56) in the canonical form sβ(α) = Sβ(0)e

cα − Sβ(α), where

Sβ(α) =
γ

c
(T +

rα2

2
+

rα

c
+

r

c2
), and Sβ(0) =

γ

c
(T +

r

c2
).

When T = −r/c2 the exponential influence disappears and sβ(α) is a quadratic
function of α. In this case, the special tanvolute of the involute of a circle of radius
r is an involute of another circle of radius R∗ = r/| sinβ|.

Example 5 (Tanvolutes of cycloids, epicycloids, and hypocycloids).
Earlier we have shown that the arclength function l(α) for a cycloidal, epicycloidal,
or hypocycloidal arc has the form

l(α) = A sin bα, (11.57)

where A = 4r(1± r/R), b = 1/κ, and κ = 1± 2r/R. When a disk of radius r rolls
outside a circle of radius R to produce the epicycloid we use the plus sign, and when
it rolls inside to produce the hypocycloid we use the minus sign. The cycloid is the
limiting case R = ∞. For the cycloid, l(α) is the length of the cycloidal arc from
the highest point M of a cycloidal arch to a point P where the tangent segment
makes an angle of inclination α with the horizontal line through M . There is a
similar interpretation for l(α) for the epicycloid and hypocycloid.
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368 Chapter 11. ARCLENGTH AND TANVOLUTES

The constant A, the amplitude of the sine function in (11.57), is equal to the
length of one half of the cycloidal, epicycloidal, or hypocycloidal arch. Now insert
the general arclength formula (11.57) in (11.39) and obtain

I(α) = Aecα
∫ α

0

e−cθ sin bθ dθ =
A

b2 + c2
(becα − b cos bα− c sin bα).

Formula (11.40) for the arclength function of the β-tanvolute now becomes

sβ(α) =
γ

c
ecαE − γ

c
T − γA

b2 + c2
(b cos bα+ c sin bα), (11.58)

where E = T + Abc/(b2 + c2). Again, E = Sβ(0) sinβ from the canonical form
(11.49). If E = 0 there is no exponential influence in (11.58). This occurs only if
T = −Abc/(b2 + c2).

To get the classical involutes of these curves we let β → 0. Then c → 0 and
γ → 1, and (11.58) gives

s(α) = Tα+
A

b
(1− cos bα). (11.59)

for the arclength of the involute of a cycloidal, epicycloidal, or hypocycloidal curve,
a combination of the arclength of a circle and of a cycloidal curve of the same type.

Example 5a (Tanvolutes of a cycloid (b = 1)). Figures 11.29a-d are
examples of attached involutes of a cycloid with various increasing values of the
ratio T/A, which compares the initial tangent length T with A, half the length of
a cycloidal arch.

∞

1.2

2

T/A

 0

0.4

0.8

1

T/A(a)

(b)

(c)

(d)

(e)

(f)

(g)

Attached Detached 

asymptotic

standard

critical

Figure 11.29: Involutes of a cycloid with various tangent length ratios T/A.
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Figures 11.29e-g are examples of detached involutes of a cycloid. As the initial
tangent length T increases, the linear term Tα in (11.59) is dominant. It represents
the arclength function of a circle. Apparently, only the case T = 0 in Figure 11.29a
has been previously treated.

When b = 1, b2 + c2 = 1+ c2 = γ2, and the arclength function in (11.58) for the
β-tanvolute of a cycloid becomes

sβ(α) =
γ

c
ecαE − γ

c
T −A cos(α− β), (11.60)

where now the formula for E simplifies to E = T + Ac/γ2. When E = 0, the
exponential term disappears in (11.60) and sβ(α) is a cosine function that represents
the tanvolute of a shifted cycloid. If E �= 0 and cα > 0, the exponential term
dominates, but if cα < 0 the shifted cycloidal term dominates. The tanvolute
makes larger and larger spirals as α → +∞, but stabilizes to a shifted cycloid as
α→ −∞.

Figure 11.30 shows an example of a β-tanvolute of a cycloid with a small |β|,
and E close to 0.

β = −3°

Figure 11.30: A β-tanvolute of a cycloid with small |β| and E close to 0.

Figure 11.31 shows examples with larger values of |β| and illustrates how the
exponential influence of the tanvolute is pushed to ∞ as E → 0, with the shifted
cycloid being dominant. Each dominant shifted cycloid is a special tanvolute.

∞ 
. . .   

T 
(a)  β  = −45 °

(b)  β  = −30 °
Special  β-tanvolutes 

T T * 

T * 

Figure 11.31: Two β-tanvolutes of a cycloid, with the shifted cycloid becoming more
dominant as E → 0. Special β-tanvolutes (no exponential influence) also shown.
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370 Chapter 11. ARCLENGTH AND TANVOLUTES

Example 5b (Tanvolutes of an astroid (b = 2)). A hypocycloid with
r/R = 1/4, κ = 1/2, b = 2, is called an astroid. Figure 11.32a shows attached
involutes corresponding to increasing values of the ratio T/A from 0 to 1. Figure
11.32b shows detached involutes with various ratios T/A greater than 1. As T →∞
the involutes become more and more circular.

T/A 1/6 3/6 4/6
1

8/6 10/6
20/6

∞

2/6

(a)

(b)

T/A

0

Detached

Attached

asymptotic

standard

critical

Figure 11.32: Involutes of an astroid with various initial tangent ratios T/A.

Figure 11.33 displays three β-tanvolutes with β = −π/6 and various values of
the ratio T/A. In Figure 11.33b there is no exponential influence, and the tanvolute
is a special tanvolute, which is a similar astroid, inscribed in the larger astroid, and
rotated. Figure 11.34 shows a β-tanvolute of an astroid with β = −π/60, a value
small enough so that some of the spirals appear on the page.

T/A
(a) (b)  Special (c)β  = −30°

1/6 1/4 1/2 

Figure 11.33: β-tanvolutes of astroid with β = −π/6 and various ratios T/A.

β = −3°

. . .. . .

Figure 11.34: β-tanvolute of an astroid with a small |β|.
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Example 5c (Tanvolutes of a cardioid (b = 1/3)). A cardioid is an
epicycloid with r = R, κ = 3,and b = 1/3. Figure 11.35 shows some of its involutes
corresponding to various initial tangent lengths. The leftmost involute in the top

0 0.4 0.75 1

1.5 2.5 6

asymptotic

T

∞

A

T
A

standard critical

Attached

Detached

Figure 11.35: Involutes of a cardioid with different initial tangent lengths.

row of Figure 11.35 is the classical involute with initial length T = 0, which is usually
the only involute treated. But there are more involutes possible when T �= 0, some
of which are shown. As T/A increases from 0 to 1, the involutes are attached, as
shown by the examples in the first row. The second row shows examples of detached
involutes obtained as T/A increases beyond 1.

Figure 11.36 shows tanvolutes of a cardioid (interior shaded) with various ini-
tial tangents. The special tanvolute in Figure 11.36b, which has no exponential
influence, is a larger similar cardioid, rotated, with its cusp touching the smaller
cardioid.

Special

(a) (b) (c) 

Figure 11.36: β-tanvolutes of a cardioid.
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372 Chapter 11. ARCLENGTH AND TANVOLUTES

11.18 CUSPS OF CYCLOIDAL SPECIAL TANVOLUTES

Each special tanvolute of a cycloidal curve, which can be a cycloid, epicycloid, or
hypocycloid, is a curve of the same type, similar and rotated. As β varies, the cusp
of the β-tanvolute of a curve σ traces a path that can be determined explicitly.
Figure 11.37 shows the locus of cusps of some examples.

(c) epicycloid

(a) deltoid

(d) nephroid (e) cardioid (f) involute of a circle

 polar
tractrix

(b) cycloid

Figure 11.37: Locus of cusps of some cycloidal, epicycloidal, and hypocycloidal special
tanvolutes.

In Figure 11.37a the locus of cusps of a deltoid consists of three arcs resembling
circular arcs. In Figure 11.37b the locus is a reflected cycloid. In Figure 11.37c
the locus is a curvilinear triangle, and in Figure 11.37d it consists of a symmetric
loop. For the cardioid in Figure 11.37e the locus is a loop resembling an inverted
teardrop. In Figure 11.37f the locus is a spiral known as a polar tractrix, a curve
whose representation in polar coordinates has a constant polar tangent segment.

It is easy to show that the path traced by the cusp of these β-tanvolutes is the
inversion of the curve σ through the circle circumscribing σ having its center at the
center of the fixed circle defining the cycloidal curve (this circle being a straight line
in the case of the cycloid). A proof can be given by referring to Figure 11.38.

In Figure 11.38a, the arc AV plays the role of a cycloidal arc with a cusp at A
and a radial axis of symmetry through O, so that OA = OV . (The proof uses only
this symmetry and not the fact that the arc is cycloidal.) In Figure 11.38b the arc
is rotated to produce arc A′V ′, and then in Figure 11.38c the rotated arc is scaled
radially from O to become arc A′′V ′′ where the scaled version passes through V .
Point M is the point of intersection of AV and the radial line OA′′. Therefore the
curvilinear triangle OMV is similar to the curvilinear triangle OA′′V and we have
OA′′/OV = OV/OM , or OA′′ = (OV )2/OM . Now OV is the radius of the circle
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with center O through A and V , hence the locus of A′′ is the inversion of AMV
with respect to the circle, as asserted.

A V

O

A V
A'

V'

A''

V''

A''

V''
A V A V

O O O

locus locus
axis of

symmetry

inversion 
circle

(a) (b) (c) (d) 

M MM

Figure 11.38: Proof that the locus of cusps is obtained by inversion.

11.19 VARIABLE ANGLE OF ATTACK β

Beginning in Section 11.10 we considered only a constant angle of attack β. But
the basic differential equations (11.32) and (11.33) in Theorem 11.1 also hold when
β is not constant. This opens the door to further research by choosing β to be a
function of α.

In the general discussion it is important to establish the tangency angle ψ of the
curve σ so that (ψ, s) provide intrinsic coordinates of σ. From a diagram similar
to that in Figure 11.15 it is easy to see that in the most general case the tangency
angle ψ (with respect to some initial direction) is given by

ψ = α− β,

where α and β are as in Figure 11.15b, with β not necessarily constant.
In Sections 11.4 and 11.5 we treated several examples with β = α, in which case

ψ = 0 and the free-end curve σ is a straight line. This led to simple derivations
of known formulas for the arclength l = l(α) of a cycloid (proportional to sin
α), catenary (proportional to tan α), tractrix (proportional to log(cos α)). More
complicated arclength functions were given for an exponential curve, a parabola,
and generalized pursuit curves, all examples with β = α.

Further examples treated in Section 11.5 are cycloidal curves with β proportional
to α. The arclength of an epicycloidal arc traced by a point on the boundary of a
disk of radius r rolling along the outer circumference of a fixed circle of radius R uses
β = α/κ, where κ = 1+2r/R. A corresponding result was obtained for the arclength
of a hypocycloidal arc in which the circle of radius r rolls inside the circumference
of the fixed circle of radius R. In this case β = α/κ, where κ = 1− 2r/R. In both
cases, ψ = α(1− 1/κ) and the arclength is proportional to sin β.
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374 Chapter 11. ARCLENGTH AND TANVOLUTES

NOTES ON CHAPTER 11

Part 1 of this chapter (Sections 11.1 through 11.7) is based on work published
by the authors in [22]. Most of the material in Part 2 (Sections 11.8 through 11.15
and 11.19) first appeared in [26]. The material in Sections 11.16 through 11.18 has
not been previously published.

Part 1 uses sweeping tangents to obtain arclength and intrinsic equations of
curves. The results in this chapter underscore the importance of intrinsic equations.
Every plane curve can be regarded as the path of a moving particle. The intrinsic
equation connects the distance covered by the particle with the angle through which
the tangent line turns, and provides the most natural description of the curve be-
cause it does not rely on an external coordinate system. Our treatment of tanvolutes
in Part 2 was simplified by using the intrinsic equations in Part 1.

When we classify the curves treated in this chapter according to their arclength
functions l = l(α), we find a hierarchy of elementary functions. For a circle of
radius r, l(α) = rα, a linear function of α. The arclength function for the involute
of a circle is quadratic in α, and for the involute of the involute of a circle, it
is cubic in α. Cycloids, epicycloids, and hypocycloids have sinusoidal arclength
functions: l(α) = A sin bα. A catenary has arclength function proportional to
tanα, and the arclength function of a logarithmic spiral is an exponential of the
form l(α) = L(eaα − 1).

In general, classical involutes are more complicated curves than their evolutes.
For example, the arclength function of a circle in linear in α but that of its involute
is quadratic in α. In fact, if the arclength function of a tangency curve τ is a
polynomial in α of degree k, then that of its involute (obtained by integration) is
a polynomial of degree k + 1. In contrast, the arclength function of the special
tanvolute of τ involves a polynomial of degree k.

In all our examples, a general tanvolute spirals away from the tangency curve
in an unbounded fashion in one direction, and tends asymptotically to the special
tanvolute in the other direction. The special tanvolute, in turn, is a scaled and
rotated version of the tangency curve. Particular examples are the special tanvolute
of a circle, a concentric circle as in Figure 11.18b, and the special tanvolute of a
cardioid, a scaled and rotated cardioid, as in Figure 11.22. In Figure 11.13, the
special β-tanvolute of a logarithmic spiral is the same spiral rotated by β + π/2.

In the three main problems considered in Part 2 of this chapter, the tangent
length function t(α) was either given or determined from the arclength functions l
and s. A knowledge of t(α) allows us to find the area of the region between a base
curve and its β-tanvolute swept by the tangent segment, as described in Chapter 1.

Finally, we note a relation between tanvolutes and bicycle wheels. The spokes
of a bicycle wheel connecting the outer rim to a small axial disk are not positioned
radially, but tangentially to the inner disk. Instead of forming right angles with the
outer rim, the spokes are inclined at some small constant angle of attack, so the
outer rim is like the special tanvolute of the inner disk. The technical reason for
this arrangement of spokes is to keep them under tension rather than compression.
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Chapter 12

CENTROIDS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

A lemma of Archimedes states that the centroid of a composite object consisting
of two parts lies on the line segment joining the centroids of each of the two parts.
The left part of the figure shows how to find the centroid of three points of equal
mass using this lemma.

1

2

3

Choose two points, say 1 and 2; their centroid is midway between them. By the
lemma of Archimedes, the centroid of all three points lies on the segment joining
point 3 and the centroid of 1 and 2. Repeat the process starting with points 2 and
3. The centroid of all three points also lies on the segment joining point 1 and the
centroid of 2 and 3. The two segments so constructed intersect at the centroid of all
three points. Note that this method uses only bisection of segments and connecting
points.

Determine the centroid of the seven points of equal mass in the right part of the
figure by using only bisection of segments and connecting points.

Prove that the centroid of n points of equal mass can be found in a similar
manner, using only n− 1 bisections.

375
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12.1. INTRODUCTION 377

21
The first part of the chapter shows how centroids of various plane figures

can be easily determined without calculus. The second part describes two

methods for locating the centroid of a finite number of points by graphical

construction, without using coordinates or numerical calculations. The first

method makes one arbitrary guess and forms a closed polygon; then an appro-

priate correction yields the exact location of the centroid. The second is an

inductive procedure that combines centroids of two disjoint sets to determine

the centroid of their union. It uses only bisection of line segments and connect-

ing pairs of points. Both methods can be applied with drawing instruments

or with computer graphic programs.

PART 1: CENTROIDS OF PLANE FIGURES

12.1 INTRODUCTION

Archimedes introduced the concept of center of gravity. He used it in many of his
works, including the stability of floating bodies, ship design, and in his discovery
that the volume of a sphere is two-thirds that of its circumscribing cylinder. It
was also used by Pappus of Alexandria in the 3rd century AD in formulating his
famous theorems for calculating volume and surface area of solids of revolution. We
can only speculate on what Archimedes had in mind when he referred to center
of gravity because none of his extant works provides an explicit definition of the
concept. The existence of a center of gravity for every object is by no means obvious.
Its discovery and use by Archimedes to solve problems in physics and mathematics
is a landmark contribution to human thought.

Today a more general concept, center of mass, plays an important role in physics.
Newton’s laws of mechanics are usually stated so they apply to a point particle de-
scribed by its position, velocity, and acceleration. Every object we see in nature
is really a compound body made up of smaller parts, ultimately of atoms, and
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378 Chapter 12. CENTROIDS

physicists apply Newton’s laws to such extended objects. They do this by imag-
ining a large body, such as a planet or sun, as a single point where all its mass
is concentrated. This point is called the center of mass. The position, velocity,
and acceleration of a compound body are really those of the center of mass. In
uniform centrally symmetric bodies the center of mass is identified with the center
of symmetry.

We begin this chapter by defining the center of mass of a finite set of points.
Given n points r1,. . ., rn, regarded as position vectors in Euclideanm-space, relative
to some origin O, let w1,. . .,wn, be n positive numbers regarded as weights attached
to them. The center of mass is the position vector c defined to be the weighted
average given by

c =
1

Wn

n∑
k=1

wkrk, (12.1)

where Wn is the sum of the weights,

Wn =
n∑

k=1

wk. (12.2)

When all weights are equal, the center of mass c is called the centroid. If each
wk = w, then Wn = nw, the common factor w cancels in (12.1), and we get

c =
1

n

n∑
k=1

rk, (12.3)

which is equivalent to assigning weight 1 to each point. If the points r1,. . ., rn, are
specified by their coordinates, the coordinates of c can be obtained by equating
components in (12.1).

Two important properties of center of mass follow at once from (12.1). Suppose
the position vectors r1,. . ., rn are drawn from the origin O of a coordinate system.
If the origin is translated to a new position by a vector a, each position vector rk
is replaced by rk − a so the center of mass relative to the new origin is equal to

1

Wn

n∑
k=1

wk(rk − a) =
1

Wn

n∑
k=1

wkrk − a = c− a.

In other words, the center of mass is shifted by the same amount as each position
vector. This means that the center of mass is an intrinsic property of the body that
does not depend on the origin of the coordinate system.

Next, if each position vector rk is expanded or contracted by the same scaling
factor t, then (12.1) shows that the center of mass c gets multiplied by the same
factor t. We call this the scaling property of center of mass.

When we deal with a system whose total mass is distributed along all the points
of an interval, or along a curve, or throughout some region in the plane or in space
rather than at a finite number of discrete points, the concepts of mass and center
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12.2. THE ARCHIMEDES LEMMA 379

of mass are defined by integrals rather than sums. The definitions can be found
in most calculus textbooks. For uniform bodies the center of mass is called the
centroid.

Sections 12.2 through 12.4 determine centroids of several plane figures without
using the formal machinery of integral calculus. Examples include the vertices of a
triangle, an L-shaped lamina (a lamina can be thought of as a plane figure cut out
of a thin piece of cardboard or plywood of uniform thickness), the boundary of a
triangle, a triangular lamina, and a circular arc.

For a lamina with a center of symmetry, the centroid is at the center. To
find the centroid of nonsymmetric laminas we shall use some basic properties of
centroids, described below, together with a more profound property that we call
the Archimedes Lemma, because it resembles Proposition 4 in [47; Book I, On the
Equilibrium of Planes, p. 191].

12.2 THE ARCHIMEDES LEMMA

Archimedes Lemma. If an object is divided into two smaller objects, the center
of mass of the compound object lies on the line segment joining the centers of mass
of the two smaller objects.

For objects made up of a finite number of discrete masses a simple proof follows
at once from the definition in (12.1), and the same type of proof works for more
general mass distributions defined by integrals. We don’t know how Archimedes
proved Proposition 4 because he alludes to a previously proved property in his lost
treatise On Levers.

Example 1 (Centroid of the vertices of a triangle). Figure 12.1a shows a
system of three points, the vertices of a triangle. We will show that the centroid of
this system is at the intersection of the three medians of the triangle. (A median is
the line segment from a vertex to the midpoint of the opposite side.) First, consider
a pair of vertices as one object, whose centroid is midway between the vertices, and
the opposite vertex as the second object, and apply the Archimedes Lemma. This
places the centroid c of the combined object on a median. Repeat the argument
for each pair of vertices and we see that c is on all three medians. Therefore the
three medians of a triangle intersect at a point, which is the centroid of the vertices.
Later we will show that the centroid of the vertices is also the centroid of the entire
triangular lamina.

To find the distance from a vertex to the centroid, refer to the parallelogram
formed by the dotted lines in Figure 12.1b. Its upper edge joins two midpoints of
the original triangle. Its lower edge joins midpoints of the inner triangle having
two vertices at the original base and one vertex at the centroid. Two medians pass
through the diagonals of this parallelogram. The diagonals bisect each other, so
the intersection point of the two medians trisects both of them. In other words, the
distance from each vertex to the centroid of the vertices is two-thirds the length of
the median.

In general, the Archimedes Lemma involves three objects A, B, C whose centers
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(a) (b)

Figure 12.1: The centroid of the vertices of any triangle is at the intersection of the
medians.

of mass a, b, c lie on a line. But a line is uniquely determined by any two of its
points. Therefore, if we know the center of mass c of a compound object C and the
center of mass b of one of its parts B, then the center of mass a of the other part
A is on the line joining b and c. This variation of the Archimedes Lemma vastly
increases the scope of its applicability, as we will demonstrate later with a number
of examples involving plane laminas.

Besides the Archimedes Lemma we use several simple properties of centroids,
each of which seems intuitively evident when the centroid of a plane lamina is
regarded as the point about which the gravitational forces acting on the lamina are
balanced.

12.3 FUNDAMENTAL PROPERTIES OF CENTROIDS OF PLANE
LAMINAS

1. Translation property. Translation of a lamina by a vector translates its
centroid to the centroid of the translated lamina.

2. Rotation property. Rotation of a lamina through an angle about an axis
perpendicular to the plane of the lamina rotates its centroid to the centroid of the
rotated lamina.

3. Centroid of a symmetric object. If a lamina has a center of symmetry,
the centroid of the lamina is at the center of symmetry.

4. Centroid of a lamina with an axis of symmetry. If a lamina has an
axis of symmetry, its centroid lies somewhere on it.

5. Centroid of an object formed from a lamina and any of its trans-
lates. A lamina together with any of its translates is a compound object whose
centroid is at the midpoint of the line segment joining the centroids of the two
laminas.

It is easy to verify these properties for objects consisting of a finite number of
discrete points in a plane, using (12.1). Similar proofs can be given for the more
general case in which centroids are defined by integrals. We will give proofs only
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for properties (2) and (5) for objects consisting of a finite number of points.

Proof of (2). For this proof we represent each point rk as a complex number.
By property (1) there is no loss of generality if we assume the rotation axis passes
through the origin, in which case rotation of rk through an angle θ is the same as
multiplying rk by eiθ, so the centroid of the rotated system is equal to

r1e
iθ + · · ·+ rne

iθ

n
= c eiθ.

Proof of (5). If the first object has points r1,. . ., rn with centroid c then the
translated object has points r1 + a, . . ., rn + a, where a is the translation vector.
The composite object consists of 2n points whose centroid C is given by

C =
r1 + · · ·+ rn + (r1 + a) + · · ·+ ( rn + a)

2n

=
r1 + · · ·+ rn

n
+

1

2
a = c +

1

2
a,

so C is at the midpoint of the segment joining c and c+ a.

12.4 APPLICATIONS

We have already used the Archimedes Lemma to find the centroid of the vertices
of a triangle. We use it again to find the centroids of a variety of nonsymmetric
objects. All the objects considered are assumed to be uniform bodies for which the
center of mass and the centroid are identical. As mentioned above, the centroid of
a uniform symmetric object, such as a rectangular lamina or a parallelogram, is at
the center of symmetry.

Example 2 (L-shaped lamina). Figures 12.2a and 12.2b show an L-shaped
plane lamina decomposed in two different ways into rectangular pieces. In each case,
the centroid of the lamina lies on the line segment joining the centroids of the two
rectangular pieces. Consequently, the centroid of L is at the point of intersection of
these line segments, as shown in Figure 12.2c.

In practice there may be some difficulty in determining the point of intersection
of the two line segments in Figures 12.2a and 12.2b because they could be nearly
parallel. Figure 12.3 shows another way to find it. Extend the L-shaped lamina as
shown to form a large rectangle whose centroid is at its center.

The centroid of the smaller rectangle in the corner is at its center. Therefore,
by the variation of the Archimedes Lemma, the centroid of L must also lie on the
line joining these two centers. This line intersects each of the lines in Figures 12.2a
and 12.2b at the required centroid of L.

Example 3 (Two intersecting line segments, a limiting case of Example
2). When each rectangle of the L-shaped lamina in Example 2 degenerates to a
line segment, the object consists of two perpendicular line segments. We can easily
find the centroid of such an object even if the segments are not perpendicular.
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(a) (b) (c)

Figure 12.2: Centroid of an L-shaped lamina found by using the Archimedes Lemma
twice.

Figure 12.3: Alternative method for finding the centroid of an L-shaped lamina.

Figure 12.4a shows a body APB consisting of two legs PA and PB. Its centroid
lies on the segment joining the midpoints M and N of the legs.

If the legs have equal length the figure is symmetric and its centroid is halfway
between M and N .

If the lengths are unequal, let PA be the shorter leg and divide body APB
into two parts, a symmetric part APA′, where PA′ has length PA, plus a residual
segment A′B. The centroid of A′B is at its midpoint p, and the symmetric part
APA′ has its centroid at the point s midway between the centers M and M ′ of the
equal sides, as shown in Figure 12.4b. By the Archimedes Lemma, the centroids
p and s lie on the line that contains the centroid c of the compound body APB.
This line intersects segment MN at c.

Example 4 (An alternative method for finding the centroid in Example
3). An alternative method for determining the centroid c leads to a surprising and
useful connection with the triangle MON whose vertices are the midpoints of the
sides of triangle APB, shown in Figure 12.5. Instead of dividing APB into a
symmetric part plus an extra segment as was done in Example 3, we extend the
shorter leg AP to point Q so that AQ has the same length as PB. The composite
body consisting of segments AQ and PB of equal length has its centroid at point
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A

M

P N B

A
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P N B

s
c

M' A'
(a) (b)

Figure 12.4: Determining the centroid of two intersecting line segments.

t, halfway between the midpoints T of AQ and N of PB. Now let e denote the
midpoint of PQ. By the variation of the Archimedes Lemma, the centroid c of
APB lies on the line joining the centroids e and t. This line intersects the segment
MN at c.

A

M

T

P

Q

N B e

ct

O

Figure 12.5: Alternative method for finding the centroid of APB.

Example 5 (Yet another method for finding the centroid in Example
4). Now we show that the line through e, t, and c in Figure 12.5 also passes through
the midpoint O of AB. Quadrilateral PNOM is a parallelogram because MO is
parallel to PB and ON is parallel to AP . First we show that line eO bisects angle
MON , then we show that line eO also contains t and c.

Draw a line through e parallel to PN and extend ON until it intersects this line
at R, say, as shown in Figure 12.6. We get a new parallelogram eROM that is also
a rhombus (all four of its sides are equal). The reason for this is that

eR = PN =
1

2
PB =

1

2
AQ,
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A
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c
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R

Figure 12.6: The centroid c lies on MN and also on the bisector of angle MON .

and

Me = MP + Pe =
1

2
AP +

1

2
PQ =

1

2
AQ = eR.

Hence eO is a diagonal of the rhombus so it bisects angle MON . But segment TN
divides the rhombus into two congruent quadrilaterals MONT and eRNT , so t,
the midpoint of TN , is at the center of the rhombus. Hence diagonal eO passes
through t and hence also through c because e, t, and c lie on a line. Therefore,
we have another way to find the centroid c that does not require extending the leg
AP . Complete the triangle having PA and PB as two edges, and draw the triangle
MON joining the midpoints of its sides. The intersection of MN and the bisector
of angle MON is the centroid c.

Example 6 (The centroid of the boundary of a triangle). The boundary
of a triangle can be regarded as an object made from a uniform wire. Its centroid
can be determined by applying the Archimedes Lemma twice. First imagine the
boundary of the triangle as a composite body consisting of two line segments meeting
at one of the vertices plus a second body consisting of the edge opposite this vertex.
This can be done in three ways, as illustrated in Figures 12.7a, b, and c. In each
case, the centroid of the first body can be found as in Example 5, and the centroid
of the second body lies on the angle bisector joining these two, shown as a red line
in each of Figures 12.7a, b, c. The three angle bisectors will intersect at the centroid
of the triangular boundary.

Example 7 (The centroid of a triangular lamina). Archimedes was the
first to determine the centroid of a triangular lamina T (T includes the boundary of
the triangle and all points inside). He found that the centroid of T is at the point
of intersection of the three medians.

In fact, Archimedes gave two proofs, both using argument by contradiction.
However, both proofs are complicated, involving a large number of auxiliary con-
struction lines, and are not easy to follow. We give a simple direct proof.
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M O

N

M O

N

M O

N
(a) (b) (c)

Figure 12.7: The centroid of the boundary of a triangle is at the intersection of the three
angle bisectors of the medial triangle.

1

2

3 4

c1

2

12

(a) (b)

Figure 12.8: A triangle divided by its midlines into four congruent triangles.

Dissect T into four similar triangles by its midlines, as shown in Figure 12.8a.
The four pieces are congruent and each edge is half that of the corresponding edge of
T . The pieces numbered 3 and 4 are translates of triangle 1, whereas piece number
2 in the center is obtained by rotating triangle 1 through 180o about the center of
their common edge. Triangles 1 and 2 together form a parallelogram whose centroid
c12 is at its center, which is at the midpoint of the common base of triangles 1 and
2 and also on the median of both triangles 1 and T , as shown in Figure 12.8b.

Now refer to Figure 12.9. Let r be a vector from the uppermost vertex A of
T to a point alleged to be the centroid c1 of triangle 1, and let m be the vector
(along the median) from A to the midpoint of the opposite side of triangle 1. We
wish to prove that r and m are parallel. By the translation property of centroids,
the terminal points of the translated vectors in Figure 12.9a represent the centroids
c3 and c4 of triangles 3 and 4, respectively. Since triangle 4 is a translation of
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Figure 12.9: Determining the centroid of a triangular lamina.

triangle 3, property 5 tells us that the centroid c34 of triangles 3 and 4 together lies
midway between c3 and c4. Now the large triangle T is divided into two parts, the
parallelogram with centroid c12 and the two triangles 3 and 4 with centroid c34, so
by the Archimedes Lemma the centroid c of T is on the line segment joining c12
and c34 which, in turn, is parallel to and equal in length to the vector r. Hence the
vector from c12 to c is tr, where t lies between 0 and 1, as shown in Figure 12.9b.
Therefore the vector from A to c is the vector sum m + tr. But triangle 1 can
be obtained from T by scaling distances from vertex A by the factor 1

2 , so by the
scaling property of centroids we have r = 1

2 (m + tr), which implies m = (2−t)r.
This shows that r and m are parallel because m is a positive scalar times r.

Hence the two centroids c1 and c are on the median from vertex A to the
opposite side. Applying the same argument to the other vertices we see that c is
on each of the three medians. This shows that the medians of a triangle intersect
at the centroid of the triangle. As already shown in Example 1, this point is also
the centroid of the three vertices, and the distance from each vertex to the centroid
is two-thirds the length of the median.

The authors have devised a variation of this proof that the reader may wish to
discover independently. It involves dividing the large triangle into nine congruent
triangles by trisecting of its edges. The corner triangles are translates of each other.
The lamina is made up of the three corner triangles, together with a centrally
symmetric hexagon such that each pair of opposite edges are of equal length. One
fringe benefit of this modified proof is that it not only locates the centroid but at
the same time gives the distance of the centroid from each vertex.

Example 8 (The centroid of a circular arc and sector). The Archimedes
Lemma can also be used to find centroids of curved figures. For example, a standard
calculus exercise is to show that the centroid of a circular arc of radius r that
subtends a central angle of 2α radians lies along the radius that bisects the arc at a
distance r(sin α)/α from the center. When α = 0 this distance is to be interpreted
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as r, which agrees with the fact that

sinα

α
→ 1 as α→ 0.

r

f (α/2) f (α)

α/2

α α

Figure 12.10: Here f(α) denotes the distance from the center of the circle to the centroid
of the arc subtended by an angle of 2α radians.

This result can be deduced from the basic properties of centroids. Refer to
Figure 12.10, which shows a circular arc of radius r with central angle 2α radians.
By symmetry, the centroid lies on the radial line that bisects this arc. Let f(α)
denote the distance from the center of the circle to the centroid. The bisector divides
the arc into two symmetric arcs of α radians, and the centroids of the smaller arcs
are located at a distance f(α/2) from the center. By the Archimedes Lemma, the
centroid of the larger arc 2α must lie on the line segment joining the centroids of the
smaller arcs. This line segment is perpendicular to the radial line from the center
to the centroid of the larger arc. Therefore, from the right triangle in Figure 12.10
we see that

f(α) = f(α/2) cos(α/2)

or, replacing α by 2α, we find that

f(2α) = f(α) cosα, (12.4)

with f(0) = r.
This is a functional equation relating f(2α) with f(α). We will show that the

only function continuous at 0 that satisfies (12.4) is f(α) = r(sin α)/α, as required.

Solution of the functional equation (12.4). The function f0, defined by

f0(α) = r
sinα

α
if α �= 0,

ApostolGeoChapter 12_v2.indd   13ApostolGeoChapter 12_v2.indd   13 10/3/12   12:04 PM10/3/12   12:04 PM



388 Chapter 12. CENTROIDS

f0(0) = r,

satisfies (12.4) because sin(2α) = 2sin α cos α. Also, f0 is continuous at 0. Now let
f be a solution of (12.4) that is continuous at 0, and define

g(α) = f(α)/f0(α).

We wish to prove that g is the constant function 1. Applying the functional equation
(12.4) with α �= 0we find

g(2α) =
f(2α)

f0(2α)
=

f(α)cos(α)

r sin(2α)/(2α)

=
2αf(α) cos(α )

2r sin(α) cos(α)
=

αf(α)

r sin(α)
= g(α).

Using this repeatedly we obtain g(2nα)= g(α) for n = 1, 2, . . . . If x = 2nα
this last relation states that g(x) = g(x/2n) for n = 1, 2, . . . . Letting n→∞ and
invoking continuity at 0 we find g(x) = g(0) = 1 for all x, hence f(α) = f0(α), as
asserted.

A similar argument shows that the centroid of a circular sector of radius r sub-
tending a central angle 2α lies on the radial bisector sector at a distance equal to
(2/3)r(sin α)/α from the center. The Archimedes Lemma leads to the same func-
tional equation, but in this case the limiting value as α→ 0 is f(0) =(2/3)r. In fact,
the method of Example 8 works in some cases of nonuniform mass distribution with
radial symmetry, the centroidal distance being cr(sin α)/α, where c is a constant
depending on the mass distribution. Example 8 will be solved by another method
in Section 13.9, Example 2.

PART 2: CENTROID OF n POINTS

12.5 CENTROIDS CONSTRUCTED GRAPHICALLY

Next we describe two methods for locating the centroid of a finite number of points
in 1-space, 2-space, or 3-space by graphical construction, without using coordi-
nates or numerical calculations. The first involves making a guess and forming a
closed polygon. The second is an inductive procedure that combines centroids of
two disjoint sets to determine the centroid of their union. For 1-space and 2-space
both methods can be applied in practice with drawing instruments or with com-
puter graphics programs. Centroids of points in higher-dimensional spaces can be
determined with the help of geometric methods by projecting the points onto lower-
dimensional spaces, depending on how the points are given. For example, points in
4-space with coordinates (x, y, z, t) can be projected onto points in the xy plane
and in the zt plane where graphic methods apply.

Our geometric methods are best illustrated when the weights are equal (deter-
mining centroids), and we will indicate in appropriate places how the methods can
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be modified to the more general case of unequal weights (determining centers of
mass).

Let ck = rk − c, the geometric vector from centroid c to rk. Then c1,. . ., cn
have centroid O because (12.3) shows that

n∑
k=1

ck = O. (12.5)

Figure 12.11a shows four points and the geometric vectors represented by arrows
emanating from their centroid. Figure 12.11b shows the vectors being added head
to tail to form a closed polygon. Of course, the vectors can be added in any order.

1
1

2

2

3

3

4

4

c
c

(a) (b)

Figure 12.11: Vectors from the centroid form a closed polygon when placed successively
head to tail.

Method 1: Closing a polygon. This geometric method for locating the
centroid of n points r1,. . ., rn involves choosing a point g as a guess for the centroid.
Then we construct a closed polygon and modify the guess once to determine c.

We introduce the deficiency vector defined by

d =

n∑
k=1

(rk − g) = nc− ng,

as a measure of the deviation between g and c. A knowledge of d gives c, because

c = g +
1

n
d. (12.6)

The vector d/n is the error vector. It tells us exactly what should be added to the
guess g to obtain the centroid c. Figure 12.12 illustrates the method by an example.
The four points used in Figure 12.11a are also shown in Figure 12.12a with a guess
g for their centroid, and geometric vectors rk − g drawn from g to the four points.
For simplicity, in the figure we use labels k = 1, 2, 3, 4 to denote these vectors.
In Figure 12.12b the vectors are placed successively head to tail, starting from g
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1
1
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3

34

4
g g

c

(a) (b)

Figure 12.12: If g is not the centroid, the polygon obtained by adding the vectors is not
closed. It can be closed by adding−d to the other vectors.

to form the sum d. If a lucky guess placed g at the centroid, the vectors placed
head to tail would form a closed polygon as in Figure 12.11b, and d would be zero.
But in Figure 12.12a, g is not the centroid, and the polygon formed by the four
vectors in Figure 12.12b is not closed. However, an additional vector joining the
tail of r1 − g to the head of r4 − g will close the polygon. This vector, shown as
a broken line in Figure 12.12b, is the deficiency vector d. We find c by adding the
error vector d/4 to g. In practice, Figures 12.12a and 12.12b can be drawn on the
same graph. We have separated them here for the sake of clarity.

Although this example illustrates the method for four points in a plane, the
method works equally well for any number of points in 1-space, 2-space, or 3-space.
For n points we add the error vector d/n to g, as indicated by (12.6), to get the
centroid c. The error vector d/n is easily constructed geometrically. In fact, to
multiply d by a positive scalar λ, plot 1/λ on a number line drawn in a convenient
direction not parallel to d, and join 1/λ and the head of d with a line segment. A
parallel line to d through the unit on the number line intersects d at λd, as is easily
verified by similarity of triangles.

Multiplication by a general positive scalar is needed when the method of guessing
once is used to find the weighted average c of n given points as defined by (12.1).
As before, we make a guess g and let

d =

n∑
k=1

wk(rk − g) = Wn(c− g).

This gives us c = g + d/Wn, and it is easily verified that the foregoing geometric
method can be adapted to find d, the error vector d/Wn, and hence c. Two simple
examples illustrate how the method yields familiar interpretations of the centroid.

Example 9 (Centroid of two points). The centroid of two points is midway
between them, and it is instructive to see how the geometric method works in this
simple case.
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Figure 12.13: Determining the centroid of two points.

Figure 12.13a shows two points p and q and a guess g for their centroid. This
may seem to be an outlandish guess because g is not on the line through p and q.
Nevertheless, the method works no matter where g is chosen. When we add the
vector from g to p to that from g to q, the sum

d = (p− g) + (q − g)

is one diagonal of a parallelogram, as shown in Figure 12.13b, and Eq. (12.6) tells
us that the centroid is given by

c = g + d/2 = (p+ q)/2,

which lies midway between p and q.
Actually, by choosing g outside the line through p and q, there is no need

to construct d/2, because we know that c lies on this line at the point where d
intersects it.

Example 10 (Centroid of three points). Choose three points p, q, r,
and make a guess g for their centroid (Figure 12.14a). The points are vertices of a
triangle, possibly degenerate, but the guess g need not be in its the plane. According
to Method 1, we form the sum

d = (p− g) + (q − g) + (r − g) = (p+ q + r)− 3g

and by (12.6) the centroid is

c = g + d/3 = (p+ q + r)/3.

It should be noted that the method works even if p, q, r are collinear provided
we choose g not on the same line, which turns out to be a wise guess in this case.
For such a g, we know that c is on the line through p, q, r, so the vector d will
automatically intersect the line at c, and hence there is no need to divide d by 3.

We can also verify that in the nondegenerate case all three medians of the triangle
meet at the centroid, and that the centroid divides each median in the ratio 2:1.
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Figure 12.14: The three medians of a triangle intersect at the centroid of the vertices.

In Figure 12.14b the centroid is placed at the origin so that p+ q + r = O. First
consider the median from r to the edge joining vertices p and q. The vector from
the centroid to the midpoint of this edge is (p+ q)/2 whereas r = −(p+ q). This
shows that the median passes through the centroid and that the distance from the
centroid to vertex r is twice that from the centroid to the midpoint of the opposite
edge. By interchanging symbols, we find the same is true for the other two medians.
So all three medians meet at the centroid, and the centroid divides each median in
the ratio 2:1 as asserted.

Variation of method 1 that avoids dividing.

Figure 12.15 shows an alternative way to determine the centroid c of the points in
Figure 12.12 that avoids constructing the error vector d/4. Figure 12.15a shows the

1 1
2

2
3

3

4

4
g

c d

d'

g

g'

(a) (b)

Figure 12.15: The centroid as the intersection of two deficiency vectors d and d′.

same four points with a new guess g′ chosen not on the line through d. The polygon
of Figure 12.12b appears again in Figure 12.15b as dashed lines, together with a
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new polygon (solid lines) obtained by adding the vectors rk − g. This produces a
new deficiency vector d′ joining the tail of r1 − g′ to the head of r4 − g′. Because
g′ is not on the line through d, the two geometric vectors d and d′ intersect at c,
as shown by the example in Figure 12.15b.

Although the example in Figure 12.15 treats four points, the method also works
for any finite number of points. It should be noted that if the points are collinear
a second guess is not needed provided we choose the first guess g not on the line
through them. The construction used for three collinear points in Example 10 also
works for any number of collinear points. The deficiency vector d will intersect the
line through these points at the centroid c.

The case of unequal weights is treated similarly as described previously. Make
two guesses, and the two deficiency vectors so constructed can be shown to intersect
at c.

Method 2: Inductive process. This method regards the given set of points
as the union of two disjoint subsets whose centroids are known or can be easily
determined. The centroids of the subsets are combined to determine the centroid
of the union. The process depends on how the subsets are selected. For example,
we can find the centroid of n+ 1 points if we know the centroid of any n of them.
If cn denotes the centroid of points r1, r2, ... , rn, so that

cn =
1

n

n∑
k=1

rk,

then

cn+1 =
1

n+1

n+1∑
k=1

rk =
1

n+1
(

n∑
k=1

rk + rn+1),

or

cn+1 =
1

n+1
(ncn + rn+1). (12.7)

In other words, cn+1 is a weighted average of the two points cn and rn+1, with
weight n attached to cn and weight 1 attached to rn+1. Because cn+1 is a convex
combination of cn and rn+1, it lies on the line joining cn and rn+1. Moreover, from
(12.7) we find

cn+1 − cn =
1

n+1
(rn+1 − cn),

which shows that the distance between cn+1 and cn is 1/(n+1) times the distance
between rn+1 and cn. Repeated use of (12.7) provides a method for determining
the centroid of any finite set.

In the case of unequal weights, (12.7) becomes

cn+1 =
1

Wn+1
(Wncn + wn+1rn+1),

a convex combination of cn and rn+1 that lies on the line joining cn and rn+1. This
implies

cn+1 − cn =
wn+1

Wn+1
(rn+1 − cn),
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so the distance from cn+1 to cn is wn+1/Wn+1 times that between rn+1 and cn.

Example 11 (Centroid of five points). Figure 12.16 shows how this method
yields the centroid of five points. Let ck denote the centroid of the set of points 1,
2, ..., k. The centroid c1 of point 1 is, of course, the point itself. Using (12.7) with
n = 1 we find c2 is midway between 1 and 2. Now connect c2 with point 3 and
divide the distance between them by 3 to find the centroid c3. Then connect c3
with point 4 and divide the distance between them by 4 to find c4. Finally, connect
c4 with point 5 and divide the distance between them by 5 to get c5. It is clear
that this method will work for any number of points.

1

c1

2
c2

3

c3

4

c4

5

c5

Figure 12.16: Distance between ck+1 and ck is 1/(k+1) times the distance between rk+1

and ck.

Variation of Method 2 using only bisection and connecting points.

A variation of Method 2 can be used by those who prefer not to divide vectors into
more than two equal parts. This construction uses only two geometric operations–
bisection of segments, and connecting points–so it applies only to the case of equal
weights. We begin with a special example that constructs the centroid using only
repeated bisection of segments.

Example 12 (Centroid of four points). The centroid of four points p, q, r,
s, is given by

c = (p+ q + r + s)/4.

By writing this in the form

c =
1

2
(
p + q

2
+

r + s

2
), (12.8)

we see that the centroid is at the midpoint of the segment joining (p + q)/2 and
(r + s)/2 which, in turn, are midpoints of the segments from p to q and from r
to s. By permuting symbols in (12.8), we find the centroid is also the midpoint of
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the segment joining (s+ p)/2 and (q + r)/2, and of the segment joining points (p
+ r)/2 and (q + s)/2. Two quadrilaterals with vertices p, q, r, s are shown in
Figure 12.17, one convex and one not convex. In each case the segment joining p
and r (shown dashed) is a diagonal of the quadrilateral with vertices p, q, r, s, as
is the segment joining q and s. The centroid c lies midway between midpoints of
the edges and of the diagonals of the quadrilateral. Any four of the six bisections
shown are enough to determine the centroid.

s
sr

r
p q p qp+q

2

p+s
2

s+r
2

r+q
2

p+s
2

s+r
2

r+q
2

p+q
2

Figure 12.17: For each set of four points the centroid is midway between midpoints of
edges and diagonals.

If the four points are collinear, (12.8) shows that three bisections alone suffice
to determine their centroid. An obvious iteration of (12.8) shows that, if k ≥ 1,
successive bisection suffices to find the centroid of any 2k points, collinear or not.
If the number of points is not a power of 2 we will show that again two operations,
bisection of segments and connecting points, suffice to find their centroid. One of
the principal tools used in this method is the Archimedes Lemma of Section 12.2.
When adapted to finite sets of points, this property can be modified as follows:

Archimedes Lemma for Finite Sets. If a finite set with centroid c is divided
into two disjoint sets with centroids c1 and c2, then the three centroids are collinear.
Moreover, c lies between c1 and c2.

This is easily proved by the same method we used to obtain (12.7) in Method
2. Instead of (12.7) we get a formula of the form

c =
1

n1 + n2
(n1c1 + n2c2),

where c1 is the centroid of n1 points and c2 is the centroid of n2 points. This shows
that c is a convex combination of c1 and c2 and hence lies on the line segment
joining them.

The next example shows how the Archimedes Lemma can be used to determine
centroids of finite sets of points using only bisection of segments and connecting
pairs of points.
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Example 13 (Centroid of five points). Figures 12.18a and 12.18b show five
points distributed in two ways as the union of four points and one point. In each
case the centroid of the four points is found as in Example 12, so by the Archimedes
Lemma the centroid of all five points lies on the dashed segment joining the centroid
with the fifth point. Figure 12.18c shows the intersection of the two dashed segments
giving the required centroid of the five points.

(a) (b) (c)

Figure 12.18: Centroid of five points found by using the Archimedes Lemma twice.

In the special case when the five points are collinear, the method cannot give
the actual centroid c because the intersecting lines are also collinear. But in this
case we can adjoin a sixth point not on the common line and find the centroid c′

of the six points by using the Archimedes Lemma twice. Three of the five collinear
points together with the sixth point form a quadrilateral whose centroid c1 can be
found as in Example 12. The remaining two of the five collinear points have their
centroid c2 at their midpoint. By the Archimedes Lemma the centroid c′ lies on the
line joining c1 and c2. Now repeat the argument, using a different choice of three
of the five collinear points to find another line containing c. Then the line from the
sixth point through c′ intersects the line through the five points at their centroid c.

Now we have all the ingredients needed to show that centroids can be determined
geometrically using only bisection of segments and connecting pairs of points. We
state the result as a theorem, whose proof is constructive and outlines a variation
of Method 2.

Theorem 12.1. For n ≥ 2, the centroid of n points in m-space can be constructed
using only bisection of segments and connecting distinct points.

Proof. The proof is by induction on n. For n = 2 bisection suffices. For n = 3
we use bisection and drawing lines in the same manner as described in Example 13.
For n = 4, bisection alone suffices as described in Example 12.

Now suppose the theorem is true for n points, and consider a set of n+1 points.
Select one of the n+ 1 points and join it to the centroid of the remaining n points
which, by the induction hypothesis, has been obtained by bisection of segments and
connecting points. Repeat the process, using a different choice for point n + 1. If
all n + 1 points are not collinear, the two lines so obtained will intersect at their
centroid. If all the n+1 points are collinear, choose an additional point outside this
line and form, in two ways, a set of n points and a disjoint set of two points (as in
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Example 13) and apply the inductive procedure twice. This gives two lines whose
point of intersection is the centroid, obtained by using only bisection of segments
and connecting points.

Now we have several procedures at our disposal for finding centroids by an
inductive method, two of which have been illustrated for five points. In Example
11 (Figure 12.16) we advanced one point at a time, and in Example 13 (Figure
12.18) we decomposed the set of five points in two different ways as the disjoint
union of a single point and a set of four points. In general we can decompose a set
of n points into two disjoint subsets in two different ways and use the Archimedes
Lemma twice as was done in Example 13. The choice of subsets is a matter of
preference, depending on the number of points.

12.6 ALTERNATIVE BISECTION INDUCTIVE METHOD

An alternative method gives the centroid of any sequence of n points,using exactly
n − 1 bisections of segments, and with each bisection it constructs two lines con-
necting distinct points. The method can be described inductively as follows. Start
with three noncollinear points 1, 2, 3. Point 1 is its own centroid, C1. The bisector
B1 of the segment joining 1 and 2 is their centroid, C2. Now bisect the segment
joining 2 and 3 to get their bisector, B2. The segment joining 1 and B2 intersects
that joining 3 and C2 at the centroid C3 of points 1, 2, 3. (Figure 12.19a.) Now
suppose that centroids C3, C4, ...,CN have been constructed in the same manner
for N points, where N ≥ 4. Choose point N + 1, noncollinear with N and CN ,

C

N+1

BC

C

N

N-1 N+1

N

N

(a) (b)

C1

C3

C2B1
B2

1

3

2

Figure 12.19: Alternative bisection inductive method uses only one new bisection and
two additional line segments at each step.

and let BN denote the bisector of the segment joining N and N + 1, as shown in
Figure 12.19b. The reader can verify that the segment joining BN with CN−1 inter-
sects the segment joining CN with N + 1 at the centroid CN+1. This step requires
only one new bisection and drawing two additional line segments, and proves our
assertion by induction. The advantage of this method is that only three earlier
points are needed at each step of the induction. A Java applet of this process is at
www.mamikon.com/Centroid.html.
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We devised this alternative after receiving a communication from an amateur
mathematician, Jason Shields, who sent us elaborate accurate drawings of his con-
structions for 1024 = 210 points and for 1155 = 3 × 5 × 7 × 11 points, using only
bisections and joining of distinct points. His method is based on factorization of
the number of points into prime powers.

12.7 GENERALIZATION OF A PUTNAM PROBLEM

We conclude with an extension of Problem A4 of the 29th William Lowell Putnam
Mathematical Competition (1968), which asked to show that the sum of the squares
of the n(n−1)/2 distances between n distinct points on the surface of a unit sphere
in 3-space is at most n2. (See [56].) Several solutions are known, including one by
the authors given in Chapter 14 as an application of Theorem 14.3, using a method
that reveals the natural role played by the centroid. The same method is used here
together with graphic construction of centroids to solve a more interesting and more
general problem in m-space.

The generalized problem asks for the maximum value of the sum of squares of
all distances among n points r1, . . ., rn, in m-space that lie on concentric spheres of
radii |r1|, . . ., |rn|. We can imagine an analogous problem in atomic physics where
electrons move on concentric spheres and we ask to minimize the potential energy
of the system, which requires minimizing the sum of reciprocals of the distances
between charges. Here we wish to maximize the sum of the squares of the distances
between points. Theorem 14.3 of Chapter 14 shows that the sum is related to their
centroid c by the formula

∑
k<i

|ri − rk|2 = n
n∑

k=1

|rk|2 − n2|c|2, (12.9)

where
∑

k<i is an abbreviation for the double sum
∑n

i=1

∑i−1
k=1. Using (12.9),

we can easily maximize the sum on the left, because the right-hand side has its
maximum value if and only if |c| reaches its minimum. In other words, locate the
points so the centroid is as close as possible to the common center of the spheres.
If the value |c| = 0 is possible, then c is at the common center (which is chosen also
as the origin O), and the maximum value is n times the sum of the squares of the
radii of the concentric spheres:

max
∑
k<i

|ri − rk|2 = n
n∑

k=1

|rk|2.

For example, in the original Putnam problem, each |rk| = 1, and by locating the
points so their centroid is at the center, we find that (12.10) gives the required
maximum:

max
∑
k<i

|ri − rk|2 = n2. (12.10)

However, if the points are required to lie on different spheres, the problem of locating
them to maximize the sum of squares is more difficult because it is not always
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possible to place their centroid at the common center. But it can be solved by
the graphical method for finding the centroid by closing a polygon. This solution
gives a constructive approach as well as a visual interpretation of the results. The
solution splits naturally into two cases, depending on how the largest radius |rn|
compares with the sum of all other radii.

Case 1. |rn| <
∑n−1

k=1 |rk| , n ≥ 3. When n = 3, this is the triangle inequality,
and for n > 3 it is a polygonal inequality that makes it possible to choose the
vectors r1,. . ., rn, to have sum zero. In this case we place the origin at the common
center of the spheres, and connect the vectors with hinges, head to tail, to form a
closed polygon. Because the vectors joining successive edges have sum zero, they
can be translated so all initial points are at the origin. The terminal points r1,. . .,
rn, will lie on concentric spheres of radii |r1|, . . ., |rn|, their centroid will be at the
common center, and the points will satisfy the maximal sum relation (12.10).

If n = 3 the points are vertices of a rigid triangle. But if n > 3, there are
infinitely many incongruent solutions represented by closed flexible polygons. Any
one of these shapes provides a solution: translate each vector parallel to itself to
bring all tails to a common point, the common center of the spheres.

Case 2. |rn| ≥
∑n−1

k=1 |rk| , n ≥ 2. In this case the vectors r1,. . ., rn cannot

have sum zero unless |rn| =
∑n−1

k=1 |rk| and the vectors are on a line. In general,
we get the largest possible sum of squares of distances from each other by arranging
the vectors along a straight line, with the first n − 1, vectors r1,. . ., rn−1 pointing
in the same direction, and the nth vector rn (with the largest radius) pointing in
the diametrically opposite direction. Unlike in Case 1, this solution is unique; it
gives the largest possible sum of squares of distances from each other consistent
with (12.9), but it will not reach the maximum provided by the right-hand side of
(12.10) because the centroid is not at the origin.

Where is the centroid?

Using the guess g = O, we find the deficiency vector d in this case is d =∑n
k=1 rk = nc, hence c = d/n. Therefore (12.9) implies that the maximum is

given by

∑
k<i

|ri − rk|2 = n
n∑

k=1

|rk|2 − |d|2,

because the vectors are along a line.

As in the original Putnam problem, it is surprising that the maximum in both
cases is independent of the dimensionality m of the space if m ≥ 2. Any solution in
one common equatorial plane of the spheres (that is, for m = 2) is also a solution
in all higher-dimensional spaces.
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NOTES ON CHAPTER 12

The material in Sections 12.1 through 12.4 was originally published in [6]; that
in Sections 12.5 through 12.7 appeared in [14].
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Chapter 13

NEW BALANCING
PRINCIPLES WITH
APPLICATIONS

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

An isosceles right triangle and a semicircular disk are inscribed in a square as
depicted below. Show that:

The two regions in (a) are in area equilibrium about the vertical axis through the
center (indicated by the arrow).

The semicircular arc and the base of the triangle in (b) are in arclength equilib-
rium about the same axis.

(a) (b)

Use the foregoing results to show that:

The volume of a sphere is two-thirds that of the right circumscribing cylinder
(whose height is the diameter of the sphere).

The surface area of a sphere is two-thirds the total surface area of the same
circumscribing cylinder.

401
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31

Archimedes’ mechanical balancing methods led him to stunning discoveries

concerning the volume of a sphere, and of a cylindrical wedge. This chapter

introduces new balancing principles (different from those of Archimedes) in-

cluding a balance-revolution principle and double equilibrium that go much

further. They yield a host of surprising relations involving both volumes

and surface areas of circumsolids of revolution, as well as higher-dimensional

spheres, cylindroids, spherical wedges, and cylindrical wedges. The concept

of cylindroid, introduced here, is crucial for extending to higher dimensions

Archimedes’ classical relations on the sphere and cylinder. We also provide for-

mulas for centroids of various portions of these objects, including remarkable

new results for hemispheres in n-space. Throughout the chapter we adhere

to Archimedes’ style of reducing properties of complicated objects to those of

simpler objects.

13.1 INTRODUCTION

The sphere and circumscribing cylinder engraved on Archimedes’ tombstone com-
memorate his landmark discovery that their volumes and surface areas are related
by the same ratio 2/3. He discovered the volume relation and many other geomet-
rical results by mechanical balancing.

In particular, he found the volume of a cylindrical wedge by introducing the
balancing shown in Figures 13.1a and 13.1b. First, he uses the Pythagorean theorem
to balance the lengths of horizontal chords of a triangle and a semicircular disk
with respect to a vertical axis through its center as in Figure 13.1a. He then builds
two-dimensional regions from these chords, the right triangle and semicircular disk
in Figure 13.1b, which now are in area balance with each other. This balancing
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(a) (b) (c)

Figure 13.1: Archimedes’ balancing of a triangle and semicircular disk: (a) chord-
by-chord; (b) by areas. (c) Archimedes would have been pleased to learn that the
semicircle and the vertical base of the triangle are in arclength equilibrium as well.

eventually led him to the volume of a cylindrical wedge, as described in [47; Method,
Prop. 11].

This chapter introduces new balancing principles for treating these problems.
The wedge is treated with a new balance-wedge principle introduced in Section
13.4. The sphere and cylinder are treated with a new balance-revolution principle
introduced in Section 13.3 and illustrated here by showing that Archimedes’ balanc-
ing in Figures 13.1a and 13.1b directly yield his volume result in two different ways.
(For the volume of a sphere, Archimedes balances completely different objects.)

First, rotation of the chords in Figure 13.1a about the balancing axis, as indi-
cated in Figure 13.2a, produces a circular annulus and a circular disk which, by
a theorem of Pappus, have equal areas. Equality of these cross-sectional areas,
in turn, yields equality of the volumes of the sphere and punctured cylinder (as
was shown in Theorem 5.1), giving Archimedes’ 2/3 ratio for the sphere and its
circumscribing cylinder.

(a) (b)

Figure 13.2: (a) Rotation of balanced chords produces cross sections of equal areas
of a punctured cylinder and its insphere. (b) Rotation of balanced areas produces
a punctured cylinder and its insphere of equal volumes.

Second, rotation of the two balanced areas in Figure 13.1b generates a punctured
cylinder and the inscribed sphere as indicated in Figure 13.2b, which, by another
theorem of Pappus, have equal volumes. This gives a second proof of Archimedes’
volume result on the sphere and cylinder.

In [47; Method, p. 14] Archimedes makes the following comment: “...I apprehend
that some, either of my contemporaries or of my successors, will, by means of the
method when once established, be able to discover other theorems in addition, which
have not yet occurred to me.”
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13.2. BALANCING REGULAR CIRCUMGONS IN A PLANE 405

This chapter does that. It introduces new ideas and methods that lead to many
surprising results that Archimedes would have appreciated, all of which are extended
to higher-dimensional space. One striking consequence is a natural extension to n-
space of Archimedes’ results on both the volume and surface area of a sphere, in
which the cylinder is replaced by a “cylindroid,” and the fraction 2/3 is replaced
by 2/n for all n ≥ 2. The cylindroid is a cylinder only when n = 3.

Although the surface area relations for the sphere and cylinder do not follow
from Archimedes’ balancing in Figures 13.1a and 13.1b, they easily follow from
our new balancing principles which imply, in particular, the arclength equilibrium
in Figure 13.1c. This leads directly to a new proof of Archimedes’ area result for
the sphere and cylinder (see Figure 13.7b), and to a host of general surface area
relations as well.

13.2 BALANCING REGULAR CIRCUMGONS IN A PLANE

Our methods are based on a new balancing lemma involving lengths of tangent
segments to a circle, as depicted in Figure 13.3a. This simple lemma leads to
profound consequences concerning equilibria of arclengths of curves and areas of
plane regions, as well as surface areas and volumes of various solids.

Main balancing lemma.

Figure 13.3a shows a fixed vertical balancing axis, indicated by the arrow, passing
through the center of a circle of radius r. Consider a tangent segment of given
length L with its midpoint on the circle, to the right of the axis, and its projection,
of length H, onto a vertical tangent line on the other side of the axis.

(a) (b) (c)

r
LH

H

c
HL

r
r

r α α

Figure 13.3: (a) Balancing a line segment and its projection. (b) Proof of the bal-
ancing principle. (c) Balancing a regular polygonal arc and its tangential projection.

If α is the angle between the tangent segment and the balancing axis, shown
shaded in Figure 13.3b, we have L cosα = H. Multiplying by the radius r and
introducing c = r cosα we obtain the simple relation

Lc = Hr. (13.1)

This equates moments of lengths L and H about the balancing axis, and establishes
arclength equilibrium of the two segments: The length of a tangent segment (with
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406 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

center on the circle) times the distance of its center from the balancing axis is equal
to the length of its projection times its distance from the axis. We state this as:

Balancing Lemma 1. A line segment tangent at its midpoint to a given circle is
in arclength equilibrium, relative to an axis through the center of the circle, with its
projection on a tangent line parallel to and on the other side of that axis.

We turn next to extensions and applications of the balancing lemma.

Balancing regular circumgons with their tangential projections.

Circumgons are general objects circumscribing circles as introduced in Chapter 4.
This chapter treats only regular circumgons, defined as follows: A regular circumgon
is composed of several connected segments of equal length tangent at their midpoints
to the incircle. Figure 13.3c shows an example on one side of a diameter used as a
balancing axis, with corresponding projected segments shown on a common vertical
tangent to the left of the axis. Because the length of each edge of the circumgon is in
equilibrium with that of its projection as indicated in (13.1), the entire circumgon is
in arclength equilibrium with its entire projection, which we refer to as the tangential
projection. In other words, (13.1) is still valid, where now L denotes the total length
of the circumgon, c denotes the distance of its centroid from the balancing axis, and
H denotes the total length of its tangential projection. The midpoint requirement
in Lemma 1 restricts our circumgons to be regular. Therefore we have:

Proposition 1. A regular circumgon is in arclength equilibrium with its tangential
projection.

(a) (b)

H

Figure 13.4: Balancing regular circumgons of a given height H in (b) with their
tangential projections of total length H in (a). The circular arcs are limiting cases.

Figure 13.4b shows examples of regular circumgons of equal vertical height H in
arclength equilibrium with a projected vertical segment in Figure 13.4a of the same
height. All the circumgons have the same inradius but are located differently with
respect to their common incircle. The last two examples are circular arcs, limiting
cases of regular circumgons, whose arclengths are also in equilibrium with the same
vertical projected segment of length H. Another example is the semicircular arc
and its tangential projection in Figure 13.1c.

Balancing regular circumgonal regions with their tangential projection regions.

Figure 13.5 shows concentric regular circumgons in arclength equilibrium with their
corresponding projections. By considering the union of an unlimited number of con-
centric circumgons in equilibrium with their corresponding projections, as suggested
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13.2. BALANCING REGULAR CIRCUMGONS IN A PLANE 407

(a) (b)

H

Figure 13.5: Balancing concentric regular circumgons in (b) with their respective
projections in (a). The concentric circular arcs are limiting cases.

in Figure 13.6a, we can fill two-dimensional projection regions to also obtain areas
in equilibrium as depicted by the examples in Figures 13.6b and c. Figure 13.6d
shows the limiting case when the circumgons become circular arcs. This gives us:

Proposition 2. A regular circumgonal region is in area equilibrium with its tan-
gential projection region.

The result can be written as an equation involving moments:

AcA = PcP , (13.2)

where A is the area of the circumgonal region, P is the area of its projection region,
and cA, cP are the respective centroidal distances from the balancing axis. This
formula will be used later in Section 13.9.

In the special limiting case when the circumgonal region is a semicircular sector,
the equilibrium in Figure 13.6d becomes Archimedes’ area equilibrium in Figure
13.1b.

(c)(a) (b)

H L

(d)

α

Figure 13.6: Circumgonal regions in area equilibrium with their corresponding tan-
gential projection regions. The circular sector in (d) is a limiting case. The area
equilibrium in (b) can also be verified directly by using known formulas for the
centroid of a trapezoidal region.

Double equilibrium of regular circumgons.

Our process of building two-dimensional circumgonal regions as unions of concen-
tric circumgons is somewhat analogous to Archimedes’ process of building the two-
dimensional triangle and semicircular disk in Figure 13.1b as unions of horizontal
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408 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

chords in Figure 13.1a. At each stage, balancing of lengths leads to correspond-
ing balancing of areas. But our process also preserves balancing of circumgonal
arclengths, including the limiting circular arcs, which Archimedes’ process does
not. Thus, Propositions 1 and 2 together give us double equilibrium, which can be
described as follows:

Proposition 3. A regular circumgonal region, including the limiting case of a cir-
cular sector, is in area equilibrium with its tangential projection region; in addition,
its outer boundary is in arclength equilibrium with its tangential projection.

13.3 BALANCE-REVOLUTION PRINCIPLE AND CIRCUMSOLIDS

This section introduces a balance-revolution principle that enables us to determine
lateral surface areas and volumes of circumsolids of revolution by reducing them to
those of cylinders.

Lateral surface areas.

Balance-revolution principle for surface areas. If two plane curves are in arc-
length equilibrium with respect to a balancing axis, then the surfaces of revolution
generated by rotating them about the balancing axis have equal areas.

Arclength equilibrium means that corresponding moments are equal, and the
balance-revolution principle follows by multiplying each member of this equality by
2π and applying Pappus’ rule which, for surfaces of revolution, states that:

The area of a surface of revolution swept by a plane curve is equal to the length
of the curve times the circumference of the circle traced by the centroid of the curve.

(a) (b)

Figure 13.7: (a) Circumgon and its projection rotated about their balancing axis
form surfaces of equal area. (b) Semicircle and its balanced projection sweep out
sphere and cylinder of equal area, a new proof of Archimedes’ result.

Figure 13.7a shows an example of a regular circumgon with two edges and its
projection rotated together around their balancing axis. The rotated circumgon
generates lateral surfaces of different truncated circular cones tangent to the in-
sphere, and the vertical tangential projection generates a lateral cylindrical surface
tangent to the insphere. By the balance-revolution principle, the area of the lat-
eral surface of each truncated cone is equal to the lateral area of the corresponding
circumcylinder. By additivity of area, the same is true for the composite surfaces.
Although the circumgon in Figure 13.7a has only two edges, the same argument
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13.3. BALANCE-REVOLUTION PRINCIPLE AND CIRCUMSOLIDS 409

works for any regular circumgon. Figure 13.7b proves Archimedes’ result that a
sphere and its circumcylinder have equal areas because they are swept by rotating
a semicircular arc and its projection about their balancing axis. These examples
illustrate the following:

Theorem 13.1. The lateral surface area of revolution generated by a regular cir-
cumgon, including the limiting case of a circular arc, is equal to that of the circum-
cylinder whose height is that of the circumgon.

In other words,
S = 2πrH, (13.3)

where S is the lateral surface area generated by a regular circumgon of revolution
with inradius r and total height H in the direction parallel to the axis of rotation.
This striking result is exhibited in Figure 13.8, which shows surfaces of revolution

H

H
H

H
H

H H H H

H

(a)

(b)

Figure 13.8: All regular circumgons of height H sweep out surfaces of area 2πrH.
All spherical zones of height H also have area 2πrH.

generated by various circumgons of height H and the same inradius r. The same
holds for the limiting case when the regular circumgon becomes a circular arc and its
surface of revolution is part of a sphere. The area of a spherical zone of radius r lying
between two parallel planes at distance H apart is 2πrH, regardless of the location
of the planes. Figure 13.8b shows circumgons located differently with respect to
the diameter of the incircle. In particular, the surface area of a cone, truncated or
not, with generating segments touching the insphere at their midpoints, is equal to
that of a cylinder of the same height and the same insphere.

Consider the special case of Theorem 13.1 in which the circumgon is half a reg-
ular 2n-gon rotated around a diameter of the incircle perpendicular to two opposite
sides of the circumgon, as shown by the examples in Figure 13.9. We call these right
circumgonal surfaces of revolution. They all have height 2r. The circumscribing
cylinder is the case n = 2. All the lateral surfaces have equal area 4πr2, which is also
the area of the limiting sphere. This gives us the following remarkable extension of
Archimedes’ area result on the sphere and cylinder:

Corollary of Theorem 13.1. All right circumgonal surfaces of revolution with
inradius r have height 2r and lateral surface area 4πr2.
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410 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

6 8 12 ∞ 4

Figure 13.9: All right circumgonal surfaces of revolution of height 2r, including the
insphere, have equal lateral area, which is that of the circumcylinder, 4πr2.

Volumes.

Figure 13.10b shows two circumgonal regions in area equilibrium obtained by bal-
ancing, as was done earlier in Figure 13.6c, a collection of concentric circumgons and
their corresponding projections in Figure 13.10a. When these regions are rotated

(a) (c)(b)

Figure 13.10: Rotating two circumgonal regions in area equilibrium in (b) gives two
punctured solids of revolution in (c) with equal volumes.

together about the balancing axis they sweep out two solids of revolution having
equal volumes because of the following principle, illustrated in Figure 13.11.

Balance-revolution principle for volumes. If the areas of two plane regions
are in equilibrium with respect to a balancing axis, then the solids of revolution
generated by rotating them about the balancing axis have equal volumes.

balanced areas equal volumes

Figure 13.11: Rotating two plane regions in area equilibrium about the balancing
axis produces solids of revolution having equal volumes.

The balance-revolution principle for volumes follows from Pappus’ rule for vol-
umes, which is analogous to that for surfaces, applied to solids of revolution.

The two solids shown in Figure 13.10c have equal volumes. They are obtained
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13.3. BALANCE-REVOLUTION PRINCIPLE AND CIRCUMSOLIDS 411

by rotating the triangle and quadrilateral in area equilibrium in Figure 13.10b. One
is a solid circular cylinder punctured by two cones, and the other consists of two
parts, each being a frustum of a solid cone punctured by another cone.

Figure 13.12 shows further examples illustrating the balance-revolution prin-
ciple. Each pair of solids is generated by rotating about the balancing axis two
circumgonal regions in area equilibrium, so they have equal volumes.

(a) (b) (c)

Figure 13.12: Circumsolids of revolution. Equal heights and volumes in each pair.

Figure 13.13 shows solids of revolution generated by regular circumgonal plane
regions and their tangential projections, all of altitudeH. Each solid is punctured by
two cones whose vertices are at the center of the insphere. Because they circumscribe

H H HH
H

Figure 13.13: Regular circumgonal regions of equal altitude in area equilibrium
generate punctured solids of revolution of equal volume.

a sphere, all are examples of circumsolids, as described in Chapter 4, and they
illustrate the following general theorem:

Theorem 13.2. The volume of a punctured circumsolid generated by rotating a
regular circumgonal region is equal to that of the punctured circumcylinder whose
height is that of the circumgon.

Each such solid has volume V of a punctured cylinder given by

V =
2

3
πr2H. (13.4)

This result is consistent with our knowledge of circumsolids. Each solid of revolution
is a circumsolid so, by Theorem 4.11, each volume is one-third the product of its
outer surface area, 2πrH, and the radius of the insphere, in agreement with (13.4).

Figure 13.14 shows examples of right circumsolids, obtained by rotating half a
regular 2n-gonal region of the type shown in Figure 13.9. For such circumsolids
we have the following extension of Archimedes’ volume result on a sphere and its
punctured circumscribing cylinder, which is the case n = 2:
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6 8 12 ∞ 4

Figure 13.14: All punctured right circumgonal solids of revolution of height 2r have
the same volume as the insphere and its punctured circumscribing cylinder, 4πr3/3.

Corollary of Theorem 13.2. All punctured right circumsolids of revolution with
inradius r have height 2r and volume 4πr3/3.

13.4 MOMENT-WEDGE PRINCIPLE AND CYLINDRICAL WEDGES

As noted, Archimedes used area balance in Figure 13.1b to find the volume of a
cylindrical wedge, the main new result of his Method. Using a new principle, we
shall obtain volumes of a family of wedges with circumgonal bases, which includes
the Archimedes wedge as a limiting case. A similar treatment is given for their
lateral surface areas. Incidentally, Archimedes did not treat the surface area of a
cylindrical wedge.

Moment-wedge volume principle and circumgonal wedges.

This principle, stated in (13.5), relates the area moment of the planar base of a
right cylinder, with respect to an axis in the plane of the base, with the volume of
a wedge cut from the cylinder by an inclined plane. Figure 13.15a shows a right
cylinder with a horizontal planar base of general shape cut by a plane whose angle
of inclination with the horizontal has tangent k. We are interested in the area
moment of the base relative to the line of intersection of the two planes, which we
take as an axis of moments. An element of area ΔxΔy at distance x from the axis
has moment ΔM = xΔxΔy. On the other hand, the cylindrical column shown is
an element of volume given by ΔW = kxΔxΔy. Therefore,

ΔW = kΔM.

Integration gives
W = kM, (13.5)

where W is the volume of the cylindrical wedge whose base has area moment M
about the horizontal y axis.

In Figure 13.15b we apply (13.5) to two cylindrical wedges whose horizontal
bases are the triangle and semicircular disk of Figure 13.1b. As we know, the two
bases are in area equilibrium about the y axis, so moment M is the same for them
if the two cutting planes are inclined at the same angle with the horizontal. Hence,
by (13.5), the two wedges have equal volumes W = kM . Thus, the volume of
the cylindrical wedge is equal to that of the pyramid whose rectangular base is
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x

kx

(a) (b)

2r

kr

r r 

y

Figure 13.15: (a) Relating the volume of a general cylindrical wedge to the area
moment of its base. (b) Volume of Archimedes’ cylindrical wedge is equal to that
of the pyramid because their bases are in area equilibrium.

shaded in Figure 13.15b. This gives W = 2kr3/3, one-third the area of the base
times the altitude. Archimedes deduced (by a completely different method) the
equivalent result that the volume of the cylindrical wedge is one-sixth that of the
largest rectangular box in Figure 13.15b.

The same idea applied to two general cylindrical wedges whose bases are in area
balance gives the following corollary:

Balance-wedge volume principle. Two cylindrical wedges have equal vol-
umes if their bases are in area equilibrium about the line of intersection of the two
cutting planes inclined at the same angle with the common base plane.

Right cylinders include prisms with circumgonal bases. We apply the corollary
to prisms with circumgonal bases in area balance. Those in Figure 13.16 are built
from halves of regular 2n-gons in area balance with the same triangular base. All
the wedges have volume equal to that of the pyramid with rectangular base.

6 8 12 ∞ 4

Figure 13.16: Circumgonal wedges of equal volume. Their bases are halves of regular
2n-gons, all in area balance. Archimedes’ wedge in Figure 13.15b is their limiting
case.

Lateral surface area of a circumgonal wedge.

If the circle in Figure 13.15b has radius r, the shaded rectangle has base 2r, al-
titude kr, and area 2r2k. This is also the lateral surface area of the cylindrical
wedge, shaded in Figure 13.15b. To verify this we note that by double equilibrium
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414 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

(Proposition 3), the semicircle and its horizontal projection in the plane of the base
are in arclength equilibrium. Thus an element of arc of length Δs and its projection
Δp have equal moments about the diameter, Δs ·x = Δp ·r, where x is the distance
of element Δs from the diameter. The corresponding elements of lateral surface
area are Δs · kx for the cylinder and Δp · kr for the projection, which are equal
because the moments are equal. The sum of the Δp is 2r so by integration with
respect to arclength we see that the lateral surface of the cylindrical wedge is 2r2k,
the same as that of the projection rectangle. The same applies to the lateral surface
of each wedge in Figure 13.16, which consists of trapezoidal faces whose total area
is equal to that of the common projection rectangle. A similar proof works for a
general cylindrical wedge like that in Figure 13.15a whose planar base is bounded
by a rectifiable curve.

Thus, we have shown that the volume W of a cylindrical wedge and its lateral
surface area A are given by

W =
2

3
kr3, A = 2kr2.

The results in this section will be extended to higher dimensions in Section 13.8.

Figure 13.17 shows examples of those lateral surfaces in Figure 13.16 with r =
k = 1. Only half the unwrapped lateral surface is shown, the other half being
symmetric. Each unwrapped surface shown in Figure 13.17 has area 1, which is the
area of the common projection unit square. In the limiting case when the base is
circular, the unwrapped portion of the cylindrical surface is the region under half a
sine curve.

sine

6 8 12 ∞ 4

Figure 13.17: Halves of unwrapped lateral surfaces of the circumgonal wedges in
Figure 13.16. All have the area of a unit square, the same as the region under half
a sine curve.

13.5 BALANCING PORTIONS OF A SPHERE AND OF A CYLINDER

This section extends Balancing Lemma 1 by establishing equilibria of various por-
tions of a sphere and of a circular cylinder with their tangential projections.

Surfaces on a sphere.

We can generate surfaces on a sphere by rotating a circular arc and its projection
about a horizontal axis through the center of the circle, as indicated in Figure
13.18a. Let Δs denote the length of the small circular arc in Figure 13.18a. Then
its projection has length Δp which satisfies the approximate relation Δs·cosα = Δp,
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13.5. BALANCING PORTIONS OF A SPHERE AND OF A CYLINDER 415

where α is the angle of inclination shown. Multiplying by the radius r to obtain
moments about the balancing line, we find

Δs · (r cosα) = Δp · r,
which can be regarded as an approximate balancing relation. Rotating the balancing
line generates a central balancing plane, and rotating the projection line generates
a projection plane, both perpendicular to the axis of rotation, as in Figure 13.18b.
The circular arc generates an element of spherical surface area ΔS obtained by

ΔP
ΔS

r r cosα

α
r

(a) (b)

α
r

projection balancing
line line

(c)

SP

projection balancing
plane plane

projection balancing
plane plane

Δp Δs

Figure 13.18: Rotating a circular arc and its vertical projection in (a) about a
horizontal axis generates a surface element in (b) in area equilibrium with its pro-
jection relative to a balancing plane. (c) Solid angle in double equilibrium with its
projection cone.

rotation through a small angle. Let ΔP denote the area of the projection of ΔS on
the tangent projection plane. They are in the approximate relation ΔS ·cosα = ΔP .
Multiplying by r to obtain moments, we find

ΔS · (r cosα) = ΔP · r, (13.6)

which is an approximate area balancing relation. The factor r cosα is the centroidal
distance of a small spherical surface area element from the balancing plane, r is the
centroidal distance of the projection from the balancing plane, and (13.6) represents
area equilibrium of elements ΔS and ΔP with respect to this plane.

In particular, each small area element in Figure 13.18b will be in area equilibrium
with its corresponding planar projection according to (13.6). Because any region
of area S on the sphere and its projection of area P on the projection plane can
be approximated arbitrarily closely by such area elements, (13.6) gives us the area
equilibrium relation

Sc = Pr, (13.7)

where r is the radius of the sphere and c is the centroidal distance of the surface of
area S from the balancing plane. This relation, illustrated in Figure 13.19, can be
stated as follows:

Balancing Lemma 2. Any portion of a spherical surface is in area equilibrium
with its tangential projection relative to a balancing plane through the center of the
sphere.
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416 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

(a) (b) (c)

Figure 13.19: Balancing: (a) spherical zone and its projection annulus; (b) spherical
cap and its projection disk; (c) hemispherical surface and its projection disk.

Double equilibrium of a solid angle and its projection cone.

Figure 13.18c shows a solid angle of radius r, a union of radial lines emanating from
the center of the sphere to a portion of the sphere with area S. It is also a union
of concentric layers of spherical surfaces formed by radial shrinking of the spherical
surface of area S to 0. The spherical surface of each layer is in area equilibrium with
its projection on a plane tangent to the concentric sphere. By multiplying (13.6)
by the thickness Δr of a typical layer, we obtain layer by layer volume equilibrium.
Consequently, the entire solid angle is in volume equilibrium with its projection
solid, a cone whose vertex is at the center of the sphere and whose base is the
projection of the region of area S. The solid spherical sector in Figure 13.20a is

θ
r

(a) (b) (c)

Figure 13.20: Double equilibrium of: (a) spherical sector and cone; (b) hemisphere
with cavity and truncated cone; (c) hemisphere and solid cone.

a special case. It can also be formed from a collection of concentric hemispherical
caps in area equilibrium with corresponding projected disks as in Figure 13.19b to
produce a spherical sector in volume equilibrium with its projection cone.

Similarly, we can use concentric hemispherical surfaces like those in Figure 13.19c
to build a solid hemisphere in Figure 13.20c in volume equilibrium with a solid cone
built from the corresponding projected equatorial disks. Figure 13.20b shows an
intermediate stage, a solid hemisphere with cavity balanced by a truncated cone.

Balancing axes for symmetric objects.

The equilibria in Figures 13.19 and 13.20 are with respect to a balancing plane. All
the objects were obtained by rotation about a horizontal axis, which is also an axis
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13.5. BALANCING PORTIONS OF A SPHERE AND OF A CYLINDER 417

of symmetry that intersects the balancing plane at the centroid of each composite
object. Consequently, any axis through the centroid will also be a balancing axis.
This also applies to more general situations when the centroid of a composite object
is determined by symmetry, as in Figures 13.1, 13.19, 13.20, 13.21a, 13.22c, 13.23,
13.24, 13.27, 13.29a, and 13.29c.

Double equilibrium: spherical wedge and elliptical cone; punctured spherical
zone and projection cone.

ellipse

HH

(a) (b) (c)

projection balancing
plane plane

HH

Figure 13.21: (a) Double equilibrium: spherical wedge and cone. (b) Area equilib-
rium: zone and its projection. (c) Double equilibrium: punctured spherical zone
and cone.

Figure 13.21a shows a spherical wedge of height 2H cut from a solid hemisphere
of radius r by two planes through a diameter, each making an angle θ with the
equatorial plane. The spherical surface of the wedge is in area equilibrium with its
projection, which is an ellipse whose major axis has length 2r and whose minor axis
has length H = 2r sin θ. The solid spherical wedge is also in volume equilibrium
with the solid elliptical cone. Figure 13.21b shows a spherical surface of a zone
in area equilibrium with a slice of a circular disk, and Figure 13.21c shows double
equilibrium of solids built from concentric figures of the type in Figure 13.21b.

Balancing portions of a circular cylinder.

Instead of rotating the circle in Figure 13.18a to generate a sphere, we can translate
it in a direction perpendicular to its plane to generate a circular cylinder of radius
r, as suggested by Figure 13.22a. Corresponding translations of the balancing line
and projection line in Figure 13.18a generate two parallel planes that we call the
balancing plane (a bisector of the cylinder) and the projection plane (tangent to
the cylinder), as shown in Figure 13.22a. Translation of the circular arc in Figure
13.18a sweeps out an area element (on the lateral surface of the cylinder) in area
balance with its vertical projection rectangle (on the projection plane), as indicated
in Figure 13.22a. More generally, any region of area S on the cylinder will be in area
equilibrium, with respect to the balancing plane, with its corresponding projection
of area P on the projection plane, as illustrated in Figure 13.22b, because they can
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(a) (c)

projection balancing
plane plane

ellipse

(b)

projection balancing
plane plane

H
H

projection
line

balancing
line

Figure 13.22: (a) Small area element on cylinder in area balance with rectangular
projection. (b) Region on cylinder in area balance with tangential projection. (c)
Cylindrical wedge in double equilibrium with its projection elliptic cone.

be approximated arbitrarily closely by area elements like those in Figure 13.22a.
Again, (13.7) holds, where now S is the area of the cylindrical region, P is the area
of its projection, and c is the centroidal distance from the balancing plane to the
cylindrical surface of area S. This gives us:

Balancing Lemma 3. Any portion of a cylindrical surface is in area equilibrium
with its tangential projection relative to a balancing plane through the axis of the
cylinder.

Figure 13.22c shows a solid cylindrical wedge of height H between two inclined
planes, each making an angle θ with the horizontal equatorial plane. The lateral
surface of the wedge is in area equilibrium with its projection, which is an ellipse
whose major axis has length 2r and whose minor axis has length H. By using
concentric cylindrical wedges of decreasing radii, we can build a solid cylindrical
wedge in double equilibrium with a solid elliptic cone as shown in Figure 13.22c.
Not only is the lateral cylindrical surface in area equilibrium with its elliptical
projection, but also the solid cylindrical wedge is in volume equilibrium with the
elliptic cone.

The spherical wedge in Figure 13.21a and the cylindrical wedge in Figure 13.22c
are in double equilibrium with the same elliptic cone. Eliminating the cone, we
obtain the double equilibrium in Figure 13.23, which can be described as follows:

Proposition 2. A spherical wedge is in double equilibrium with a cylindrical wedge
of the same height and the same insphere.

When the wedges in Figure 13.23 are viewed along the common diameter, we
see the area and arclength equilibrium obtained earlier in Figure 13.6d.

Figure 13.24a shows Figure 13.21a when the wedge is a hemisphere, and Figure
13.24b shows the cylindrical wedge and cone in Figure 13.22c when the altitude is a
diameter. The equilibrium in Figure 13.24c is obtained by eliminating the cone in
the previous two figures. Figure 13.24d shows a triangular prism and semicircular
cylinder also in double equilibrium. Archimedes established their volume equilib-
rium, which is equivalent to area equilibrium of the triangle and semicircular disk
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H H H H

Figure 13.23: Spherical and cylindrical wedges in double equilibrium.

(d)(c)(b)(a)

Figure 13.24: Solids in double equilibrium. The top view of (d) appears in Figure
13.1b; it also represents the top view of each of (a) and (b) and the side view of (c).

in the top view.
The balancing relations just established, although of interest in their own right,

will be extended in the next section and applied to obtain equality of volumes and
surface areas of higher-dimensional solids.

13.6 HIGHER-DIMENSIONAL BALANCING PRINCIPLES

We begin this section by analogy with the process in Figure 13.2b, where the bal-
anced 2-dimensional regions were rotated in 3-space about the balancing axis to
generate a solid sphere and punctured cylinder. Now we do the same with the cone
and hemisphere in equilibrium in Figure 13.24a. Imagine these solids imbedded
in 4-space and rotate each around the balancing axis to sweep out 4-dimensional
solids. The hemisphere generates a 4-dimensional solid sphere, and the cone gen-
erates an object which we call a punctured 4-cylindroid. To find relations between
their volumes and surface areas we need a higher-dimensional balance-revolution
principle.

Double equilibrium of solid angle with its projection cone.

We will extend some of our earlier balancing relations to higher-dimensional space in
a manner completely analogous to the transition from 2 dimensions in Figure 13.18a
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420 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

to 3 dimensions in Figure 13.18b. First, regard the 3-dimensional configuration
in Figure 13.18b as imbedded in 4-space, and rotate the configuration in 4-space
around the horizontal axis of symmetry of the hemisphere. The 3-dimensional
hemisphere to the right of the balancing plane produces a 4-dimensional hemisphere,
the balancing plane produces a balancing hyperplane, and the projection plane
produces a projection hyperplane in 4-space. If rotated through a small angle,
the 3-dimensional surface element produces a corresponding surface element on
the 4-sphere, and the surface element on the projection plane produces a surface
element of the projection hyperplane in 4-space, which is the projection of the
surface element on the 4-sphere.

The same type of argument that produced the balancing relations (13.6) and
(13.7) shows that two elements in 4-space satisfy the same kind of balancing relation
with respect to the balancing hyperplane.

By repeating the process and arguing by induction on the dimensionality of the
space, we find that the same type of balancing holds in n-space, because the angle
of inclination α of the radial line being rotated in Figures 13.18a and 13.18b is
the same for all dimensions. This leads to double equilibrium, with respect to the
balancing plane, of an n-dimensional solid angle and its projection n-cone built from
parallel projection bases, by analogy with the solid angle equilibrium described in
Figure 13.18c.

Solid angle balancing lemma. An n-dimensional solid angle and its projection
n-cone are in double equilibrium with respect to a balancing hyperplane that passes
through the vertex of the cone and is parallel to the projection hyperplane.

Moment-volume principle.

The following principle relates moments and “volumes” of revolution. We place
quotation marks around the word “volume” to state one principle that applies to
both surface areas and volumes as understood in the traditional use of the terms.

Moment-volume principle. When an object in n-space with moment Mn relative
to an axis is rotated in (n + 1)-space about that axis, it produces an object whose
“volume” Vn+1 is given by

Vn+1 = 2πMn. (13.8)

In other words, the volume of an (n + 1)-dimensional solid of revolution is 2π
times the n-dimensional moment relative to the axis of rotation of the object that
generates the solid.

The idea of the proof can be easily seen when n = 2. Imagine an area element
ΔxΔy at distance x from the y-axis in the xy plane. Its moment about the y axis
is ΔM2 = xΔxΔy. When this is rotated about the y-axis it sweeps out a solid of
volume ΔV3 = 2πxΔxΔy = 2πΔM2. Similarly, for higher dimensions we find

ΔVn+1 = 2πΔMn.

Integration then gives (13.8).
In particular, we have the following corollary:
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Balance-revolution principle. If two objects in n-space are in “volume” equilib-
rium with respect to a balancing axis, then the objects in (n+1)-space generated by
rotating them about this axis have equal “volumes.”

In the balance-revolution principle for surface areas stated at the beginning of
Section 13.3, the objects in 2-space in volume equilibrium are two plane curves in
arclength equilibrium. When they are rotated about the balancing axis they gener-
ate surfaces in 3-space with equal volumes, which now means equal surface areas. In
the balance-revolution principle for volumes stated later in Section 13.3, the objects
in 2-space in volume equilibrium are two plane regions in area equilibrium. When
they are rotated about the balancing axis they generate solids in 3-space with equal
volumes, which now means ordinary volumes.

Applications to n-hemispheres.

The following specialization of the solid angle balancing lemma plays a key role in
the sequel:

Special balancing lemma. An n-hemisphere is in double equilibrium with its
projection n-cone with respect to the vertex of the cone and to any axis through it.

This special lemma, combined with the balance-revolution principle, leads to:

Double equality principle. The objects obtained by rotating the n-hemisphere
and n-cone in (n+ 1)-space have equal lateral surface areas and equal volumes.

13.7 ON THE SPHERE AND CYLINDROID IN n -SPACE

The main result of this section is an extension of Archimedes’ results on volumes
and surface areas of spheres to n-space for all n ≥ 2, stated below in Theorem 13.3.
This is perhaps the most profound consequence of our balancing methods because
when n �= 3 no simple relation connects the volume or the surface area of an n-
sphere with that of its circumscribing n-cylinder. (See [52] and [64] for attempts
to find such a relation.) In our extension process a new object occurs naturally,
an n-cylindroid, which has a simple and direct relation to its insphere. For n = 3
a cylindroid is a traditional cylinder (see Figure 13.26), but when n �= 3 it is an
entirely different object (see Figure 13.25 for the case n = 2).

Next we introduce a general cylindroid and compare with the standard cylinder.
A classical n-cylinder is produced by translating an (n − 1)-sphere in n-space. To
produce an n-cylindroid, we tumble (rotate) an (n − 1)-cylinder in n-space about
one of its bases. To elaborate on the constructions, we describe both the cylinder
and the cylindroid in successively higher-dimensional spaces, starting with n = 2,
shown in Figure 13.25.

In Figure 13.25a, a one-dimensional sphere (a line segment) is translated in a
perpendicular direction to produce a 2-cylinder (a rectangle). Rotating (or tum-
bling) a 1-cylinder (a line segment) about one end as in Figure 13.25b produces a
2-cylindroid (which is also a circular disk).
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start process special case

(a)

(b)

general result

1-sphere translation 2-cylinder

1-cylinder
2-cylindroidtumbling

Figure 13.25: (a) Generating a 2-cylinder by translating a 1-sphere (line segment)
in 2-space. (b) Generating a 2-cylindroid by tumbling (rotating) a 1-cylinder (line
segment) about one end in 2-space. The 2-cylindroid is also a circular disk.

(a)

(b)

start process special casegeneral result

2-sphere

2-cylinder

3-cylinder

3-cylindroid

translation

tumbling

Figure 13.26: (a) Generating a 3-cylinder by translating a 2-sphere (disk) in 3-space.
(b) Generating a 3-cylindroid by tumbling a 2-cylinder (a rectangle) in 3-space. The
3-cylindroid is also a 3-cylinder.

In Figure 13.26a, a 2-sphere (a circular disk) is translated in a perpendicular
direction to produce a 3-cylinder, and in Figure 13.26b, a 2-cylinder (a rectangle) is
tumbled about one of its bases to produce a 3-cylindroid, which in this case is also
a 3-cylinder. There is no 1-cylindroid because there is no 0-cylinder to tumble.

Natural evolution of the cylindroid.

Figures 13.27 and 13.28 illustrate how our balancing methods lead naturally to the
concept of cylindroid. In Figure 13.27, at the top of the first column, the semicircular
disk and triangle are in double equilibrium about a vertical axis through a diameter.
When these are rotated in 3-space about the balancing axis they produce two solids
of revolution, the sphere and punctured cylinder shown below them, which, by
the double equality principle, have equal volumes and equal lateral surface areas.
This is Archimedes’ classical result for n = 3, which we deduced by using double
equilibrium.

When the triangle and semicircular disk in the first row are rotated in 3-space
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13.7. ON THE SPHERE AND CYLINDROID IN n-SPACE 423

about the horizontal axis of symmetry they produce a solid hemisphere and cone,
in double equilibrium about the same vertical axis, shown at the top of the second
column in Figure 13.27. Rotating these solids, in turn, in 4-space about the balanc-
ing axis produces two 4-dimensional solids of revolution shown at the bottom of the
second column, which, by the balance-revolution principle, have equal “volumes,”
which here means both 4-dimensional volumes and lateral surface areas are equal.

symmetry
axis of

   and
rotation

n=2-balance n=3-balance n-balance

n=3-equality n=4-equality (n+1)-equality

DOUBLE
EQUALITY

DOUBLE
BALANCE

   axis of
  balance
     and
revolution

Figure 13.27: Diagram illustrating the natural evolution of the cylindroid.

To help visualize the process, refer to Figure 13.28a, showing a solid cone in-
scribed in a circular cylinder in 3-space. Figure 13.28b shows a schematic “flat-
tening” of 3-space into a hyperplane in which the cone and cylinder appear as a
triangle inscribed in a rectangle.

hyperplane

(a) (b) (c)

space

next

hh 2h

2r 2r
r

higher space

Figure 13.28: Constructing a 4-dimensional cylindroid and a punctured cylindroid.
(a) Solid cylinder and inscribed cone in 3-space. (b) Schematic flattening of (a)
onto a hyperplane, with a 4th axis erected perpendicular to it. (c) Rotation of (b)
in 4-space around a coordinate axis perpendicular to the 4th axis and to the axis
of symmetry. We refer to this as tumbling the figure.
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424 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

We choose a 4th coordinate axis perpendicular to this hyperplane (labeled as
next in Figure 13.28b) then rotate the hyperplane with its contents around an axis
that is perpendicular to the 4th axis and also to the axis of symmetry of the cone
and cylinder. We refer to this as tumbling the figure. If we rotated about the axis
of symmetry, we would obtain a 4-cylinder with an inscribed 4-cone. Instead, by
tumbling we obtain new objects, a 4-cylindroid, and the subset swept by the cone, a
punctured 4-cylindroid, depicted in Figure 13.28c. The flattened base of the triangle
in Figure 13.28b is actually the circular base of the cone in Figure 13.28a. Tumbling
the base generates the lateral surface of the cylindroid in Figure 13.28c.

We continue the process in Figure 13.27, successively rotating the double-balanced
objects in the top row through one higher dimension around the horizontal axis of
symmetry to obtain a higher-dimensional hemisphere and cone in double equilibrium
about the same vertical balancing axis through the vertex of the cone. When these
balanced symmetric objects are tumbled through one higher dimension around the
balancing axis they produce two solids of revolution of equal “volumes,” a higher-
dimensional sphere and a punctured higher-dimensional cylindroid, the key that
enables us to extend Archimedes’ results to n-space for every n ≥ 2.

Definitions of cylindroid and punctured cylindroid.

In general, an n-cylindroid and a punctured n-cylindroid are defined by direct anal-
ogy with the 4-dimensional case. We begin with an (n − 1)-cylinder of radius r
and altitude h and the corresponding inscribed isosceles (n − 1)-cone by analogy
with Figure 13.28a. Tumble them together in n-space around a coordinate axis
that passes through the vertex of the cone and is perpendicular to the axis of the
cylinder. During the tumbling, the (n − 1)-cylinder sweeps out an object we call
an n-cylindroid of radius h and altitude 2r. As the (n− 1)-cylinder sweeps out the
cylindroid, the (n− 1)-cone sweeps out a portion of the n-cylindroid that we call a
punctured n-cylindroid.

The common base of the (n−1)-cylinder and cone is an (n−2)-sphere of radius
r. Cross-sections of the (n−1)-cylinder perpendicular to its axis are (n−2)-spheres
of radius r, whereas cross-sections of the (n − 1)-cone are (n − 2)-spheres whose
radii decrease linearly from r at the base to 0 at the vertex.

When n �= 3, an n-cylindroid differs from an n-cylinder. In particular, when
n = 2, a 2-dimensional cylinder is a rectangle, but a 2-dimensional cylindroid is a
circular disk, obtained by tumbling a 1-cylinder (a line segment) about one of its
endpoints. Moreover, the “cone” inscribed in the 1-cylinder is the 1-cylinder itself
so the punctured and unpunctured 2-cylindroid are the same object.

Moment relations for cone and cylinder.

The following formulas for the volume vn−1(cyl) of the (n − 1)-cylinder and the
volume vn−1(cone) of an (n− 1)-cone are known:

vn−1(cyl) = hVn−2, vn−1(cone) =
vn−1(cyl)

n− 1
=

h

n− 1
Vn−2,
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13.7. ON THE SPHERE AND CYLINDROID IN n-SPACE 425

where Vn−2 is the volume of their common (n − 2)-spherical base, and h is their
common altitude. It is also known that the centroid of the (n − 1)-cylinder is at
the midpoint of its altitude, while that of the (n−1)-cone is at a distance h/n from
the base or, equivalently, at distance h(n−1)/n from the vertex. Consequently, the
volume moments of the cylinder and cone with respect to an axis through its vertex
perpendicular to its axis of symmetry are given by

Mn−1(cyl) =
h2

2
Vn−2, Mn−1(cone) =

h2

n
Vn−2. (13.9)

From (13.9) we immediately obtain the following lemma that plays an important
role in our extension of Archimedes’ results.

Moment ratio lemma. The volume moment of an (n−1)-cone with respect to an
axis through its vertex is 2/n times the corresponding moment of its circumscribing
(n− 1)-cylinder; hence the ratio of the two moments, cone to cylinder, is 2/n.

Extension of Archimedes’ classical results to n-space (suitable for engraving
on Archimedes’ hypertombstone).

Now we can state and prove the main result of this section, valid for all n ≥ 2:

Theorem 13.3. (a) The volume of an n-sphere equals that of its punctured cir-
cumscribing n-cylindroid.

(b) The surface area of an n-sphere is equal to the lateral surface area of its
circumscribing n-cylindroid.

(c) The volume of an n-sphere is 2/n times that of the volume of its (unpunctured)
circumscribing n-cylindroid.

(d) The surface area of an n-sphere is 2/n times that of the total surface area
of its (unpunctured) circumscribing n-cylindroid.

Proof of (a) and (b): These follow directly from the double equality principle
stated at the end of Section 13.6.

Proof of (c) and (d): By the moment ratio lemma, the volume moments of the
(n−1)-cone and (n−1)-cylinder about any axis through the vertex of the cone have
ratio 2/n. By the moment-volume principle (13.8), (with n replaced by n− 1), the
punctured and unpunctured cylindroids in n-space generated by rotating the cone
and cylinder have the same volume ratio 2/n. Combining this with Theorem 13.3a
and 13.3b we obtain Theorem 13.3c and 13.3d.

Actually, Theorems 13.3a and 13.3b are equivalent because both the n-cylindroid
and the punctured n-cylindroid are circumsolids, so by Theorem 4.13 their volumes
have the same ratio as their surface areas. The same remark applies to Theorems
13.3c and 13.3d.

Note that the 2-cylindroid and the punctured 2-cylindroid are the same object,
which is identical to their insphere (a disk), consistent with 2/n = 1.
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13.8 FURTHER EXTENSIONS TO n -SPACE, AND APPLICATIONS

Areas of spherical zones and cross sections.

Part (a) of the next theorem extends the relation illustrated in Figure 13.18b, and
part (b) extends that in Figure 13.2a. The extensions refer to cross-sections of an
n-cylindroid cut by an (n− 1)-dimensional hyperplane perpendicular to the axis of
symmetry of the cylindroid. A zone of a sphere or a cylindroid is the part of its
surface between two parallel cross-sections.

Theorem 13.4. (a) The surface areas of the corresponding zones of an n-sphere
and its circumscribing n-cylindroid are equal.

(b) Corresponding cross-sections of an n-sphere and its punctured circumscribing
n-cylindroid have equal areas.

Proof of (a). In Figure 13.21b, the zone on the hemisphere is in area equilibrium
with the projected slice of a circular disk. When they are rotated through 4-space
around the balancing axis, the hemispherical zone produces a zone of a 4-sphere, and
the projected slice produces a corresponding zone of the circumscribing 4-cylindroid.
By the balance-revolution principle, the two zones have equal areas. This proves
(a) when n = 4, and the same type of argument works for general n.

Proof of (b). Archimedes’ chord-by-chord balancing of a triangle and semicir-
cular disk in Figure 13.1a can be extended to 3-space for a cone and hemisphere
obtained by rotating the diagram in Figure 13.1a about a horizontal axis.

projection balancing
plane plane

(b)(a)

hyperbolic
segment

(c)

Figure 13.29: Extension of Archimedes’ balancing in Figure 13.1a: (a) chords,
(b) cables, (c) cross-sections of hemisphere and cone. The balance in (c) leads
to equality of cross-sectional areas of a 4-sphere and its punctured circumscribing
4-cylindroid.

This balancing is indicated in Figure 13.29a, which shows a cross-section of
the cone and hemisphere through the axis of symmetry. Puncture both the cone
and hemisphere with an arbitrary collection of chords, as depicted by the examples
in Figure 13.29b and 13.29c. Then the punctured parts will be in balance with
respect to the central balancing plane. To see why, imagine two portions of a
cable built from wires (the chords of the triangle and semicircle). Each pair of
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wires is in balance, therefore their union (the two portions of the cable) are also
in balance. In particular, each horizontal cross-sectional area of the cone will be
in area balance with the corresponding cross-sectional area of the hemisphere, as
illustrated in Figure 13.29c.

Rotate Figure 13.29c through 4-space, around a balancing axis perpendicular
to the axis of symmetry and perpendicular to the 4th coordinate axis. The ro-
tated cone sweeps out a punctured 4-cylindroid, and the hemisphere sweeps out
a 4-sphere. Each cross-section of the 3-cone will sweep out a cross-section of the
punctured 4-cylindroid, and the cross-section of the 3-hemisphere will sweep out the
corresponding cross-section of the 4-sphere. Because the two cross-sectional areas
are in balance before revolution, after revolution the swept cross-sectional hyperar-
eas are equal according to the balance-revolution principle. This proves (b) when
n=4, and the same type of argument works for general n.

Recursion formulas for volume and surface area of n-spheres.

Let Vn and Sn denote the volume and surface area, respectively, of an n-sphere
of radius r. The following formulas are consequences of Theorem 13.3a and the
moment-volume principle:

Vn+1 =
2πr2

n+ 1
Vn−1, (13.10)

Sn+2 =
2πr2

n
Sn = 2πrVn, (13.11)

n+ 1

n
· Vn+1

Vn
=

Vn−1

Vn−2
, (13.12)

Sn+2

Sn+1
=

Vn

Vn−1
. (13.13)

Initial values are V1 = 2r, V2 = πr2, S1 = 2, S2 = 2πr.

Proof. By Theorem 13.3a, Vn is equal to the volume of the punctured n-
cylindroid of radius r, which, by the moment-volume principle, is 2πMn−1(cone),
where Mn−1(cone) is the volume moment of the (n − 1)-cone of altitude r that
sweeps out the punctured n-cylindroid. Therefore, using (13.9) with h = r we find

Vn = 2πMn−1(cone) =
2πr2

n
Vn−2.

Now replace n by n + 1 to get (13.10) which, in turn, implies (13.12). The
circumsolid property Vn = (r/n)Sn in (4.16) yields (13.11). This implies Sn+2/Vn =
2πr, which is independent of n. Hence Sn+2/Sn+1 = Vn/Vn−1, which is (13.13).

Using the notation vn = Vn/2 and sn = Sn/2 we see that the recursions (13.10)
through (13.13) also hold for n-hemispheres, whose centroids will be determined in
Section 13.9.

ApostolGeoChapter 13_v2.indd   27ApostolGeoChapter 13_v2.indd   27 10/3/12   12:13 PM10/3/12   12:13 PM



428 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

Volume and lateral surface area of n-dimensional cylindrical wedge.

The moment-wedge volume principle introduced in Section 13.4 for a cylindrical
wedge can be extended to higher-dimensional space:

Moment-wedge volume principle. The “volume” Wn+1 of a general (n + 1)-
cylindrical wedge and the moment Mn of its n-spherical base are related by

Wn+1 = kMn,

where k is a constant determined by the inclination of the truncating plane.

The moment-wedge volume principle has the corollary:

The “volumes” of two (n+1)-cylindrical wedges with the same k have the same
ratio as the moments of their bases. In particular, the “volumes” are equal if the
moments are equal.

We apply the corollary to the balanced n-hemisphere and n-cone shown in the
top row of Figure 13.27. Instead of rotating these objects we use them as bases
of truncated (n + 1)-cylinders with the same height h. Their “volumes” are equal
and can be calculated explicitly as follows. The truncated cylinder whose base is
the n-cone is an (n + 1)-pyramid whose base can be regarded as a “rectangle” of
height h whose “area” is Vn−1h, where Vn−1 is the “volume” of the (n−1)-sphere of
radius r. The “volume” of this pyramid is Wn+1 = Vn−1h·r/(n+1) = Vn+1h/(2πr),
according to recursion (13.10). Replacing n+ 1 by n we get the theorem:

Theorem 13.5. An n-cylindrical wedge of radius r and height h has volume Wn

and lateral surface area An given by

Wn =
h

2πr
Vn, An =

h

2πr
Sn, n = 2, 3, . . . ,

where Sn is the surface area of an n-sphere of radius r.

When n = 2, the wedge is a triangle of area W2 = hr/2 and altitude A2 = h.
When n = 3, W3 = (2/3)r2h, equivalent to the result obtained by Archimedes.

13.9 FORMULAS FOR CENTROIDS

This section applies our balancing relations to obtain formulas for locating centroids
of various objects of interest.

1. Centroid of a regular circumgonal arc. A regular circumgon has an axis of
symmetry through the center of its incircle, so the centroid also lies on this axis, as
in Figure 13.30a. To find the distance c of the centroid from the incenter, rotate the
circumgon so its symmetry axis is perpendicular to the balancing axis as in Figure
13.30b. Balancing means that cL = rH, where L is the length of the circumgonal
arc and H is the length of its projection, hence

c = r
H

L
. (13.14)
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r c r c
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(b)
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θ θ

Figure 13.30: Rotating a regular circumgon in (a) to obtain a symmetric diagram in
(b). (c) Relation between the centroidal distance c and the central angle subtended
by the circumgon. (d) Limiting case when the circumgon becomes a circular arc.

From Figure 13.30c we see that if the regular circumgon consists of n edges and is
subtended by a central angle 2θ, with ρ the distance to a vertex as indicated, then
H = 2ρ sin θ. A simple exercise shows that L = 2ρn sin(θ/n), and (13.14) gives us

c = r
sin θ

n sin θ
n

. (13.15)

The centroidal formula (13.14) for circumgonal arcs also holds for the limiting
case when the circumgon is a circular arc of radius r with central angle 2θ, as in
Figure 13.30d. In this case the projection has length H = 2r sin θ and the circular
arc has length L = 2rθ, so the centroidal distance of the arc from the axis, which
we denote by c(θ), is obtained from (13.14) as

c(θ) = r
sin θ

θ
. (13.16)

This also follows from (13.15) when n→∞, and it was derived differently in Section
12.4, Example 8.

The next example uses (13.2) to determine area centroids.

2. Area centroid of a circumgonal region with inradius r. When the pro-
jection region is a triangle as in Figure 13.6c, we have P = Hr/2, cP = 2r/3, and
(13.2) yields

cA =
r2

3

H

A
=

2

3
r
H

L
, (13.17)

because A = rL/2. When the circumgon with central angle 2θ is rotated so its axis
of symmetry is horizontal as in Figure 13.30c, the foregoing becomes

cA =
2

3
r

sin θ

n sin θ
n

. (13.18)

In the limiting case when the circumgonal region is a circular sector of radius r and
central angle 2θ, the area centroid lies on the bisector of the sector at a distance
C(θ) from the center, where

C(θ) =
2

3
r
sin θ

θ
. (13.19)
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This follows from (13.17) using H = 2r sin θ and L = rθ, or by letting n → ∞ in
(13.18). For a semicircular disk, θ = π/2 and (13.19) gives C(π/2) = 4r/(3π). This
is the result Archimedes was seeking by balancing the triangle and semicircular disk
in Figure 13.1b.

Next we use the double equilibrium in Figure 13.21a to treat the spherical wedge.

3. Area and volume centroids of a spherical wedge. There are two centroidal
distances associated with the wedge in Figure 13.21a: the centroidal distance CA(θ)
for the spherical surface area A of the wedge, and CV (θ) for the volume V of the
wedge, where θ is the angle between the cutting plane and the equatorial plane. By
symmetry, each of the centroids lies on the vertical plane bisecting the wedge.

Area centroid of a spherical wedge. Area equilibrium means that

CA(θ) ·A = r · E, (13.20)

where E is the area of the ellipse. But we have A = 4πr2(θ/π) = 4θr2 and E =
πrH/2 = πr2 sin θ. Using these in (13.20) and solving for CA(θ) we obtain

CA(θ) =
π

4
r
sin θ

θ
. (13.21)

Volume centroid of a spherical wedge. To find the distance of the volume
centroid from the balancing plane we use the volume equilibrium relation

CV (θ) · V =
3

4
r · VE , (13.22)

where VE is the volume of the elliptical cone. In this case we have V = 4θr3/3 and
VE = Er/3 = πr2H/6 = (π/3)r3 sin θ, and when these are used in (13.22) we find

CV (θ) =
3π

16
r
sin θ

θ
. (13.23)

4. Volume centroid of a spherical sector and of a spherical segment. In
Figure 13.20a, volume equilibrium about the balancing plane states that

C(θ)Vs =
3

4
rVc, (13.24)

where C(θ) is the centroidal distance from the balancing plane, Vs is the volume
of the spherical sector, and Vc is the volume of the cone. By (13.4) we have Vs =
2πr2h/3, where h = r − r cos θ is the height of the spherical cap of the sector. The
volume of the cone is Vc = π(r sin θ)2/3. Using these in (13.24) and solving for C(θ)
we find

C(θ) =
3

8
r(1 + cos θ). (13.25)

When the conical part is removed from the spherical sector in Figure 13.20a, the
solid that remains is called a spherical segment. Archimedes in [47; Method, Prop.

ApostolGeoChapter 13_v2.indd   30ApostolGeoChapter 13_v2.indd   30 10/3/12   12:13 PM10/3/12   12:13 PM



13.9. FORMULAS FOR CENTROIDS 431

9, p. 35] determines the volume centroid of a spherical segment. His description for
the distance c of the centroid from the center can be stated alternatively as

c =
3

4

(r + h)2

2r + h
, (13.26)

where h = r cos θ is the altitude of the conical part of the sector of radius r.
The proof follows from the balancing relation involving volumes:

Vcone · ccone + Vsegm · csegm = Vsect · csect. (13.27)

We know that Vcone = πh(r2 − h2)/3, ccone = 3h/4, Vsect = 2πr2(r − h)/3, and
from (13.25), csect = 3(r+ h)/8. Also, Vsegm = Vsect− Vcone = π(r− h)2(2r+ h)/3.
When these are used in (13.27) we obtain (13.26). In the special case when h = 0,
(13.26) yields c = 3r/8 for the volume centroid of a hemisphere, which also follows
from (13.23) with θ = π/2.

5. Centroids of an n-hemisphere. Let vn, sn denote, respectively, volume and
surface area of an n-hemisphere of radius r, and let c(vn), c(sn) denote their respec-
tive centroidal distances from the center. Then we have the following remarkable
theorem:

Theorem 13.6. The following recursions hold:

c(vn) =
n

n+ 1
c(vn−2) and c(sn+2) =

n

n+ 1
c(sn), (13.28)

with initial values

c(v1) = r/2, c(v2) = 4r/(3π), c(s1) = r, c(s2) = 2r/π.

Proof. When an n-hemisphere of volume vn and surface area sn is rotated
about a diameter, it generates an (n+ 1)-sphere of volume 2vn+1 and surface area
2sn+1. By the moment-volume principle (13.8) we have 2vn+1 = 2πvnc(vn) and
2sn+1 = 2πsnc(sn), from which we find

c(vn) =
vn+1

πvn
and c(sn) =

sn+1

πsn
=

vn−1

πvn−2
,

the last relation coming from (13.13). Using (13.10) in these and invoking (13.12)
we find

c(vn)

c(vn−2)
=

c(sn+2)

c(sn)
=

vn+1

vn−1
· vn−2

vn
=

n

n+ 1
.

This proves (13.28). Joint recursion (13.13) together with (13.28) yields:

Corollary of Theorem 13.6.

c(sn+2) = c(vn). (13.29)

This surprising and remarkable result equates the centroid of an (n+2)-dimensional
surface with that of an n-dimensional volume. When n = 1, it tells us that the area
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centroid of a 3-dimensional hemisphere is at a distance r/2 from its center because
a 1-dimensional hemisphere is a line segment with its centroid at its midpoint.

Repeated use of (13.29) leads to the explicit formulas for n ≥ 1:

c(sn+2) = c(vn) =
n!!

(n+ 1)!!
pn, (13.30)

where pn = c(s1) = r for odd n, pn = c(s2) = 2r/π for even n, and n!! is the double
factorial symbol. Both c(vn) and c(sn) are rational multiples of r for odd n, and of
r/π for even n.

It is easy to see that the following unexpected reciprocal recursions also hold:

c(vn+1) =
2r2

π(n+ 2)

1

c(vn)
, c(sn+1) =

2r2

πn

1

c(sn)
. (13.31)

Unlike those in (13.28), they relate centroidal distances in consecutive dimensions.

6. Centroid of an n-spherical zone. It is well known that the centroid of the
surface of a slice of a sphere is midway between the two parallel cutting planes.
(See Corollary 5.6.) This is also seen by referring to Figure 13.31, noting that from

Figure 13.31: Centroid of a spherical zone is midway between the cutting planes.

(13.3) the area of a spherical zone grows linearly with its height H. When the zone
is a spherical cap as in Figure 13.19b, its area centroid is at the midpoint of the
height of the cap. In particular, when the cap is a full hemisphere of radius r, the
area centroid is at distance r/2 from the center. This also follows by taking n = 1 in
(13.29). Now we will show that (13.29) holds not only for n-hemispheres but for any
n-spherical zone. This recursion is included as part (c) of the following theorem.

Theorem 13.7. (a) The zones in Theorem 13.4a, which have equal areas, also have
equal centroidal altitudes (above the common equatorial hyperplane).

(b) The volume of a slice of a solid n-sphere and the surface area of the cor-
responding (n+ 2)-cylindroidal zone, which it generates, have equal centroidal alti-
tudes.

(c) The surface area of an (n + 2)-spherical zone and the volume of the corre-
sponding slice of an n-sphere of the same radius have equal centroidal altitudes.

Proof. The proof of (a) follows by analogy with Figure 13.31, with the cylinder
replaced by a cylindroid. We regard each zone as being made up of thin elemental
zones. Corresponding elements have equal areas and equal centroidal altitudes, so
the same is true for the full zone. Part (b) follows from the fact that when an object
is rotated around an axis, each of its points stays at the same altitude above a fixed

ApostolGeoChapter 13_v2.indd   32ApostolGeoChapter 13_v2.indd   32 10/3/12   12:13 PM10/3/12   12:13 PM
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hyperplane perpendicular to the rotation axis. Part (c) follows from (a) and (b) by
eliminating the common cylindroid.

Part (c) can be expressed as a recursion formula. Let c(sslicen ) denote the cen-
troidal altitude of the surface area of a zone of an n-sphere between two parallel
planes, and let c(vslicen ) denote the centroidal altitude of the volume of the corre-
sponding slice of the solid n-sphere of the same radius between the same parallel
planes. Part (c) states that

c(sslicen+2 ) = c(vslicen ). (13.32)

When the slice is a full hemisphere we obtain recursion (13.29). Again, we note
the remarkable nature of this recursion. It equates the centroid of an (n + 2)-
dimensional surface with that of an n-dimensional volume. The reason for this
phenomenon is that the cylindroid that occurred in parts (a) and (b) of Theorem
13.7 was eliminated to obtain part (c).

7. Centroid of a Lambert-type projection on an n-cylindroid. Theorem 13.7a
can be extended so that it applies not only to zones but also to any region of the
sphere and its special projection onto the lateral surface of the circumscribing cylin-
droid. In 3-space this special projection is known as Lambert’s mapping (discussed
in Section 5.12). It projects the surface of a sphere onto a lateral circumscribing
cylinder by rays through the polar axis that are parallel to the equatorial plane.
In Section 5.12 we showed that Lambert’s mapping preserves areas. Moreover, the
regions of equal area on the sphere and cylinder have the same centroidal altitude
above the equatorial plane. To see this, refer to Figure 13.18a, which shows an
elemental circular arc Δs and its balanced projection Δp. If the projection line is
moved to the opposite side of the balancing axis, the elements Δp and Δs will still
have equal moments about the balancing axis. Now rotate both through a small
angle around the balancing axis. The rotated arc produces a surface element on the
sphere and its rotated projection produces a surface element on the cylinder that is
a Lambert projection of the spherical element. According to the balance-revolution
principle, the two elements have equal areas. They also have the same centroidal
altitude above the equatorial plane. Because this holds for all such surface elements,
these two results are also true for any region on the sphere and its Lambert pro-
jection on the cylinder. This same type of proof also works in n-space, with the
cylinder replaced by a circumscribing n-cylindroid. The polar axis is replaced by
the balance-revolution axis that produces the cylindroid as in Figure 13.27. Note
that this gives another proof of Theorem 13.7a because a cylindroidal zone is a
Lambert-type projection of its corresponding spherical zone.

13.10 ON THE SPHERE AND ITS CIRCUMSOLIDS IN n -SPACE

Archimedes’ relation on the volume and surface area of a cylinder and its insphere
consists of two parts: (1) their volumes and surface areas have the same ratio, and
(2) this ratio, cylinder to sphere, is 3/2. Theorem 4.13 tells us that part (1) is true
not only for the cylinder and its insphere but for any two circumsolids having the
same insphere. When one circumsolid is the insphere itself, Theorem 4.13 implies:
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Theorem 13.8. For an n-sphere and any of its n-circumsolids, their volumes and
outer surface areas have the same ratio.

Theorem 13.8 extends part (1). This rest of this section extends part (2) by
investigating the common ratio, which we denote by ρ(n). Because of Theorem
13.8 we treat the ratio for volumes:

ρ(n) =
Vn(circumsolid)

Vn(r)
, (13.33)

where Vn(r) is the volume of the insphere of radius r of a given n-circumsolid. Our
primary interest is the behavior of ρ(n) as a function of the dimension n.

Using (13.8) with n replaced by n− 1, together with (13.9) with h = r, we find
that the volume of an n-cylindroid bears a simple relation to the volume Vn−2(r)
of a sphere having 2 lower dimensions:

Vn(cylindroid) = πr2Vn−2(r). (13.34)

This relation, together with recursion (13.10), gives us the elementary ratio

ρ(n) =
πr2Vn−2(r)

Vn(r)
=

n

2
, (13.35)

which also emerges from Theorem 13.3. This ρ(n) has such a simple form because
it depends on the ratio of volumes of spheres whose dimensions differ by 2, and
recursion (13.10) simplifies the ratio to yield (13.35).

For the next three circumsolids, ρ(n) depends on the ratio of volumes of spheres
of consecutive dimensions, for which there is no simple recursion akin to (13.10).
Before discussing these circumsolids, we investigate general properties of the ratio
Vn−1(r)/Vn(r).

Properties of the ratio V n−1(r)/V n(r).

It is known (see [2; p. 411]) that the volume of an n-sphere of radius r can be
expressed explicitly in terms of the gamma function:

Vn(r) =
πn/2

Γ(n+2
2 )

rn. (13.36)

Thus, Vn(r) is proportional to rn, but the proportionality factor is a nonelementary
function of n. The ratio of volumes of spheres is essentially the ratio of two gamma
functions. In particular,

rVn−1(r)

Vn(r)
=

1√
π

Γ(n+2
2 )

Γ(n+1
2 )

. (13.37)

There is a corresponding formula for the ratio r2Vn−2(r)/Vn(r), and in this case
recursion (13.10) tells us that the ratio of gamma functions simplifies and leads to
(13.35). No such simplification occurs for the ratio in (13.37). However, we have
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an interesting geometric interpretation of the ratio that makes no use of gamma
functions. From (13.30) we find

Vn−1(r)

Vn(r)
=

1

πc(vn−1)
, (13.38)

where c(vn−1) is the centroidal distance of an (n− 1)-hemisphere from its center.
No simple formula reveals how c(vn−1) behaves as a function of n, but it is easy

to determine its asymptotic behavior for large n. From recursion (13.31) we find
c(vn−2)c(vn−1) = 2r2/(πn), which leads to the asymptotic relation for large n:

c(vn−1) ∼ r

√
2

πn
. (13.39)

Using this in (13.38) we obtain

rVn−1(r)

Vn(r)
∼

√
n

2π
(13.40)

for large n. The asymptotic formula can also be deduced in a nonelementary way
by applying Stirling’s formula for the gamma function ratio in (13.37).

Circumsolids of inradius r for which ρ(n) depends on the ratio V n−1(r)/V n(r).

1. n-cylinder of radius r and altitude 2r. The volume of the n-cylinder is
2rVn−1(r), so (13.33) gives us

ρ(n) =
2rVn−1(r)

Vn(r)
. (13.41)

When n = 3 this yields ρ(3) = 3/2, the classical result of Archimedes.
Using (13.40) in (13.41) we obtain, for an n-cylinder, the asymptotic value

ρ(n) ∼
√

2n

π
(13.42)

for large n. By contrast, an n-cylindroid has the exact value ρ(n) = n/2 for all n.

2. n-double cone of vertex angle 2α. This double cone is the union of two
congruent cones, each having base of radius R = r/ cosα, altitude H = r/ sinα,
and volume

Vn−1(R)
H

n
= (

R

r
)n−1Vn−1(r)

r

n sinα
=

r

n sinα
(

1

cosα
)n−1Vn−1(r).

In this case (13.33) gives

ρ(n) =
1

n sinα
(

1

cosα
)n−1 2rVn−1(r)

Vn(r)
. (13.43)

For a 3-dimensional circumsolid double cone with α = π/4, (13.43) gives ρ(3) =
√
2.

This is equivalent to Archimedes’ discovery that such a cone inscribed in a sphere,
as in Figure 13.36, has volume half that of its circumscribing sphere.
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3. n-cone of vertex angle 2α. The altitude of this cone is H = r + r/ sinα =
r(1 + sinα)/ sinα and the radius of its base is R = H tanα = r(1 + sinα)/ cosα,
hence its volume is

Vn−1(R)
H

n
= (

R

r
)n−1Vn−1(r)

r

n

1 + sinα

sinα
=

r

n tanα
(
1 + sinα

cosα
)nVn−1(r). (13.44)

For this example, (13.33) yields

ρ(n) =
(1 + sinα)n

n tanα cosn α

rVn−1(r)

Vn(r)
. (13.45)

4. Truncated n-cone of vertex angle 2α. Truncate the n-cone of altitude H in
the foregoing example by removing a smaller cone of altitude h with base of radius
R1 tangent to the insphere. The volume of the smaller cone is Vn−1(R1)(h/n) =
(R1/r)

n−1Vn−1(r)(h/n). Using h = H−2r = r(1− sinα)/ sinα and R1 = h tanα =
r(1− sinα)/ cosα, we find that the smaller cone has volume

r

n tanα
(
1− sinα

cosα
)nVn−1(r). (13.46)

The volume in (13.44) minus that in (13.46) is the volume of the truncated cone
n-circumsolid, for which (13.33) yields

ρ(n) =
(1 + sinα)n − (1− sinα)n

n tanα cosn α

rVn−1(r)

Vn(r)
. (13.47)

When α = π/6 we find the values ρ(2) = 8/(π
√
3) and ρ(3) = 13/6.

We turn next to examples of n-circumsolids whose volumes, like that of the
n-cylindroid, are simply related to Vn−2(r).

Circumsolids for which ρ(n) depends on the elementary ratio V n−2(r)/V n(r).

5. n-double conoid circumscribing n-sphere. Figure 13.32, which is anal-
ogous to Figure 13.28, helps visualize the construction of such an n-dimensional
double conoid. Start with an (n − 1)-cone of radius r and altitude r inscribed in
an (n − 1)-hemisphere of radius r. It is also inscribed in an (n − 1)-cylinder of
radius r and altitude r. The volume of the cylinder is r · Vn−2(r) and that of the
cone is Vn−1(cone) = r · Vn−2(r)/(n− 1). The centroid of the cone is at a distance
r/n from the center. When the cone is tumbled in n-space about an axis through
the diameter of its base, it sweeps out a solid in n-space that we call an n-double
inconoid because it is inscribed in an n-sphere. Its insphere has radius r/

√
2, and

its volume is

Vn(inconoid) = 2π
r

n
Vn−1(cone) =

2πr2

n(n− 1)
Vn−2(r) =

Vn(r)

n− 1
, (13.48)

the last relation coming from (13.10). To obtain a solid circumscribing the n-sphere
of radius r, expand the inconoid and its insphere radially by the factor

√
2. We call

the resulting circumsolid an n-double conoid, whose volume is Vn(circumsolid) =
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Figure 13.32: Construction of a double conoid in 4-space by analogy to Figure 13.28.

2n/2Vn(r)/(n− 1). For this example,

ρ(n) =
2n/2

n− 1

in (13.33), which gives ρ(3) =
√
2, in agreement with the result obtained above in

Example 2 with α = π/4.

6. n-hexaconoid circumscribing n-sphere. This circumsolid is of special in-
terest because it leads to a ratio ρ(n) that is rational for every n ≥ 3. Figure 13.33
shows a special circumsolid of revolution formed by rotating a regular hexagon about
a diameter of a sphere of radius r. Half of the circumsolid is composed of two parts,
a circular cylinder of radius r and altitude h = r/

√
3, and an adjacent cone of radius

r with the same altitude h. We start with this solid, which we call an n-hexacone
and build an (n + 1)-hexaconoid by analogy with the construction used for the
cylindroid in the schematic representation in Figure 13.28. An (n+ 1)-hexaconoid

(a)

n-space n-hyperplane (n+1)-space

(b) (c)

Figure 13.33: Constructing an (n+1)-hexaconoid. (a) Solid hexacone in n-space. (b)
Schematic flattening of (a) onto a hyperplane, with a new axis erected perpendicular
to it. (c) Rotation of (b) in (n + 1)-space around a coordinate axis perpendicular
to this new axis and to the axis of symmetry.

is constructed from an n-hexacone in an analogous fashion. The n-hexacone consists
of two parts, an n-cylinder plus an adjacent n-cone of the same radius r and altitude
h = r/

√
3. Their volumes are related by Vn(hexacone) = Vn(cylinder) + Vn(cone).
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Tumbling the n-hexacone about an axis in (n + 1)-space produces an (n + 1)-
hexaconoid whose volume, by the moment-volume principle in (13.8), is given by

Vn+1(hexaconoid) = 2πMn(hexacone),

where Mn(hexacone) is the moment of the n-hexacone about that axis. Moments
are additive, so

Mn(hexacone) = Mn(cylinder) +Mn(cone). (13.49)

To calculate the moments on the right of (13.49) we note that Vn(cylinder) =
hVn−1(r), where Vn−1(r) is the volume of an (n − 1)-sphere of the same radius;
its moment is h/2 times this volume, so Mn(cylinder) = (h2/2)Vn−1(r). Similarly,
Vn(cone) = (h/n)Vn−1(r) and Mn(cone) = (h2/n)Vn−1(r)(n+2)/(n+1), so (13.49)

gives Mn(hexacone) =
r2

6 (1 +
2
n

n+2
n+1 )Vn−1(r). From (13.38) and (13.10) we find

ρ(n+ 1) =
Vn+1(hexaconoid)

Vn+1(r)
=

2πMn(hexacone)

Vn+1(r)
=

n2 + 3n+ 4

6n
. (13.50)

When n = 2 this yields ρ(3) = 7/6, and when n = 3 it gives ρ(4) = 11/9.
Figure 13.34 shows how to generate another type of hexaconoid. Start with the

same n-hexacone as in Figure 13.33a but orient it so that it stands on a vertex as in
Figure 13.34a. When this is tumbled in higher-dimensional space it generates the
(n+1)-hexaconoid shown in Figure 13.34b. A calculation similar to that producing
(13.50) yields

ρ(n+ 1) =
2n+1 − n− 2

n · 3(n−1)/2
.

When n = 2 this gives ρ(3) = 2/
√
3, and when n = 3 it gives ρ(4) = 11/9, which

agrees with (13.50) (because the two hexaconoids are the same object in 4-space).

(a) (b)

Figure 13.34: Another way to generate another type of n-hexaconoid.

A special family of circumsolids.

Recall the family of punctured 3-dimensional circumsolids in Figure 13.14. They
are right circumsolids, obtained by rotating half a regular 2n-gonal region of the
type shown in Figure 13.9. Each has volume 4πr3/3, which is that of their common
insphere of radius r. The corresponding unpunctured solids have a larger volume,
which is 4πr3/3 plus the volumes of the two cones that puncture the solids. Direct
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calculation of the volume of each puncturing cone generated by a regular 2n-gon
reveals that the total volume of a typical unpunctured solid is given by

Volume =
4

3
πr3 +

2

3
πr3 tan2(

π

2n
). (13.51)

When n → ∞ the second term in (13.51) tends to 0 and we obtain the volume of
the insphere as the limiting value, as expected. Incidentally, the total surface area
of each unpunctured solid is 3/r times its volume.

For this family, the ratio of the volume of the circumgonal solid to that of its
insphere is given by

Volume
4
3πr

3
= 1 +

1

2
tan2(

π

2n
).

This ratio is also that of the corresponding total surface areas. When n = 2,
the circumsolid is a cylinder and the ratio is 3/2, the same result obtained by
Archimedes. When n = 3 the circumsolid is obtained by rotating a regular hexagon,
and the ratio is 7/6, the same result obtained by taking n = 2 in (13.50). For large
n the ratio is asymptotic to 1 + π2/(8n2).

We can use the circumsolids in this family to construct a family of circum-
solids in higher-dimensional space by the same method we used to construct the
cylindroid. Figure 13.35 shows a rearrangement of the unpunctured circumsolids in
Figure 13.14. Tumbling the lower half of the cylinder generates a 4-cylindroid. Tum-

Figure 13.35: Constructing circumsolids with ρ(n) proportional to Vn−2(r)/Vn(r).

bling the lower half of the other circumsolids generates a family of 4-circumsolids.
Repeated rotation of these solids around the vertical axis of symmetry produces
higher-dimensional solids, such as cylinder, hexacone, etc. Tumbling these about an
axis through the equatorial diameter produces a cylindroid, hexaconoid, etc. Each
of these circumsolids gives a value of ρ(n) proportional to the ratio Vn−2(r)/Vn(r).
The constant of proportionality will depend on the parameters defining the partic-
ular circumsolid of the family.

Note that the double conoid in Figure 13.32 and the hexaconoid of the second
type in Figure 13.34 can also be obtained from the first two regular polygons in
Figure 13.35 (the square and hexagon) by orienting them so they stand on a vertex
rather than on the base. The same can be done with the other polygons in Figure
13.35. Thus, there are infinitely many circumsolids for which ρ(n) is proportional
to Vn−2(r)/Vn(r). But the cylindroid stands out because its ratio ρ(n) = n/2 is so
simple and yields the Archimedes ratio 3/2 when n = 3.
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Miscellaneous observations.

We conclude this section with miscellaneous remarks relating some of the results in
this chapter to results found by Archimedes.

1. n-sphere and its n-double inconoid. In his discovery of the 3/2 ratio for
both the volumes and surface areas of a cylinder and its insphere, Archimedes never
compared the sphere directly with its circumscribing cylinder. In [47; Method, Prop.
2, p. 18] he used mechanical balancing to discover that the volume of a sphere is four
times that of an inscribed cone whose base is a great circle of the sphere and whose
altitude is equal to its radius. In [47; On the Sphere and Cylinder, Book I, Prop.
34, p. 41] he proved this result using the method of exhaustion. That cone and its
mirror image form the double cone in Figure 13.36a. Archimedes’ Proposition 34
states that the volume of the sphere is exactly twice that of the double inscribed
cone. He knew that the volume of the double cone, in turn, is one-third that of the
circumscribing cylinder in Figure 13.36a, and deduced, as a corollary of Proposition
34, that the volume of the cylinder is 3/2 that of the sphere. Equation (13.48)
provides a higher-dimensional generalization of Proposition 34:

Theorem 13.9. The volume of an n-sphere is (n − 1) times that of the n-double
inconoid.

In Proposition 33, p. 39, Archimedes proved that the surface area of a sphere is
four times the area of the greatest circle in it. He combined this with Proposition 13,
p. 16 (regarding the lateral surface area of a cylinder), and concluded that the total
surface area of the circumscribing cylinder (including the bases) is 3/2 times that
of the sphere, the same ratio as their volumes. He was so excited by this discovery
that he wanted a cylinder and inscribed sphere engraved on his tombstone.

2. n-cube and its insphere. Archimedes must have realized that the volume
ratio of a cube circumscribing a sphere has the same value as the ratio of their
surface areas, which, in modern terminology, is 6/π. This ratio is not simple like
3/2 and probably would not have generated much excitement for Archimedes.

(a) (b) (c)

Figure 13.36: (a) Double cone considered by Archimedes. (b) Cube circumscribing
3-sphere. (c) Square circumscribing 2-sphere, a circular disk.

An n-cube of edge-length 2r is a circumsolid with n-insphere of radius r. The n-
cube has volume (2r)n, so the ratio in (13.33) is ρ(n) = (2r)n/Vn(r). The elementary
formulas V3(r) = 4πr3/3 and V2(r) = πr2 yield ρ(3) = 6/π and ρ(2) = 4/π,
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illustrated in Figures 13.36b and c. For general n, Vn(r) is given by (13.36), and

ρ(n) =
2nΓ(n+2

n )

πn/2
.

We remind the reader that ρ(n) also represents the ratio of the total surface area
of the n-cube to the total surface area of its n-insphere.

3. Square and its incircle. Many ancient civilizations observed through mea-
surement that the ratio of the circumference of a circle to its diameter is the same
for all circles. The Greeks were the first to explain that this is a simple consequence
of similarity. A circular disk of radius r is similar to a unit circular disk (of radius
1), the scaling factor being r. If a unit disk has circumference C and area A, then a
disk of radius r has circumference Cr and area Ar2 (because lengths are multiplied
by the scaling factor, and areas by the square of the scaling factor). Thus, the two
numbers C and A represent fundamental constants that tell us how to determine
the circumference and area of a circular disk in terms of its radius. The ratio of cir-
cumference to diameter is (Cr)/(2r) = C/2, a constant independent of the radius.
Today this ratio is denoted by the symbol π. Thus, C = 2π and a disk of radius r
has circumference Cr = 2πr.

Archimedes’ discovery in [47; Measurement of Circle, Prop. 1] is equivalent to
the statement that the area of a circular disk is one half its circumference times
its radius. For a unit disk this states that A = C/2, a landmark discovery relating
these fundamental constants. Thus, the area of a circular disk of radius r is πr2.
This is equivalent to ρ(2) = 4/π for a square and its incircle.

4. Rational ratios and Archimedes. Archimedes realized the importance of
the ratio of circumference to diameter. In [47; Measurement of Circle, Prop. 3]
he obtains various rational approximations to it by comparing the circumference
of a circle with the perimeters of inscribed and circumscribed regular polygons.
He starts with regular hexagons and keeps doubling the number of sides, until he
reaches polygons with 96 sides and obtains Proposition 3, which is equivalent to the
inequalities

3 10
71 < π < 3 1

7 .

We speculate that Archimedes realized that π, like
√
2, is not a rational number,

although he had no proof. A proof of the irrationality of
√
2 appears in Euclid’s

Elements, but the irrationality of π was first established nearly 2000 years later by
Johann Lambert in 1761.

It is clear that Archimedes was excited by geometric measurements leading to
rational ratios: The 2/3 ratio of the volumes and surface areas of a sphere and
cylinder, and the 2/3 ratio of the volume of a cylindrical wedge to its circumscribing
prism. He was not aware that their lateral surface areas also have the same ratio.

5. Extension to volume of n-ellipsoid. If an n-sphere together with its circum-
scribing cylindroid is dilated by an arbitrary factor along each of its n coordinate
axes, we obtain a general n-ellipsoid with its circumscribing ellipsoidal cylindroid.
The dilations preserve volume relations but not surface area relations. Therefore,
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442 Chapter 13. NEW BALANCING PRINCIPLES WITH APPLICATIONS

parts (a) and (c) of Theorem 13.3 also hold for the ellipsoids, namely, equality
of volumes with punctured cylindroids, and the 2/n ratio with the unpunctured
cylindroid. When n = 3 they include results found by Archimedes for ellipsoids of
revolution.

There is also an extension of Theorem 13.4b for equality of corresponding cross-
sectional areas of an n-ellipsoid and its punctured circumscribing cylindroid. This
implies equality of volumes of slices between corresponding parallel hyperplanes.

NOTES ON CHAPTER 13

Much of this chapter is contained in a paper entitled “New balancing principles
applied to circumsolids of revolution, and to n-dimensional spheres, cylindroids and
cylindrical wedges.” The paper was accepted in 2012 for publication in the American
Mathematical Monthly.
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Chapter 14

SUMS OF SQUARES

These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

1. Given two distinct points, the locus of all points in a plane containing them
such that the sum of distances from them is constant is known to be an ellipse, with
the given points as foci.

(a) What is the locus of points in the plane if the sum of squares of distances
from the given points is constant?

(b) Determine the locus if we start with any number of distinct points in 3-space.

2. The following identities involve sums of squares of consecutive integers and
can be regarded as extensions of the Pythagorean triple in the first formula:

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272.

(a) Find an infinite family of identities involving squares of consecutive integers
that include the foregoing as special cases.

Each of the following identities involves sums of squares of consecutive integers
with alternating signs:

−52 + 42 = −32

22 − 32 + 42 = −52 + 62

−112 + 102 − 92 + 82 = −72 + 62 − 52.

(b) Find an infinite family of identities involving squares of consecutive integers
with alternating signs that include the foregoing as special cases.

443
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14.1. A LOCUS PROBLEM IN THE PLANE 445

41
This chapter begins with a geometric problem concerning the locus of a

point with the sum of squares of distances from n fixed points being constant.

When generalized to higher-dimensional space, the problem leads to several

remarkable formulas for sums of squares of distances in a finite-dimensional

space. One of them is a discrete analog of the parallel-axis theorem and its

higher-dimensional extension. Another is to intrinsic second moments of com-

posite systems. After providing several applications to physics and geometry,

the chapter changes emphasis in the last section, which gives a simple method

for discovering families of striking identities involving sums of squares of con-

secutive integers and, more generally, of integers in arithmetic progression.

14.1 A LOCUS PROBLEM IN THE PLANE

A point that moves in a plane so that the sum of its distances from two fixed points
in the plane is constant traces an ellipse with the two points as foci.

What is the locus if the point moves so that the sum of the squares of the two
distances is constant?

An elementary calculation in coordinate geometry shows that the locus is a circle
with center midway between the two points.

When we ask the same question for three or more fixed points in a plane we
obtain the following surprising result.

Theorem 14.1. Given n fixed points in a plane, a point moving in the plane so
that the sum of the squares of the distances from the points is constant traces out a
circle whose center is at the centroid of the fixed points.

Proof. Start with n arbitrary points in a plane, and let O denote their centroid.
Using O as the origin of a complex plane, denote the points by the n complex
numbers z1, z2, . . ., zn, so that

n∑
k=1

zk = 0. (14.1)
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446 Chapter 14. SUMS OF SQUARES

Now let z denote an arbitrary point in the plane, and consider the sum of the
squares of the distances from z to the points:

n∑
k=1

|z − zk|2.

The kth term of the sum is

(z − zk)(z − zk) = |z|2 + |zk|2 − zzk − zzk.

Summing on k and using (14.1) we find

n∑
k=1

|z − zk|2 = n|z|2 +
n∑

k=1

|zk|2 = n|z|2 + nD2
n, (14.2)

where

D2
n =

1

n

n∑
k=1

|zk|2

is the average of the squares of the distances of the points z1, z2, . . ., zn from their
centroid. Consequently, the sum

n∑
k=1

|z − zk|2

is constant if and only if n|z|2 + nD2
n is constant. The set of all such z is a circle

centered at the centroid O, if we allow the empty set and a single point to be
considered as degenerate cases of a circle.

The special case of Theorem 14.1 in which there are three points forming the
vertices of a triangle can be found in [51; Corollary to Theorem 275].

The key to Theorem 14.1 is (14.2), which holds for any set of n + 1 points z1,
z2, . . ., zn and z for which the first n points satisfy (14.1). If z1, z2, . . ., zn lie on a
circle of radius r with center at their centroid O, (14.2) gives us

n∑
k=1

|z − zk|2 = n(|z|2 + r2). (14.3)

This holds, in particular, if z1, z2, . . ., zn are the vertices of a regular n-gon, or
more generally if they are the vertices of a centrally symmetric polygon. If z also
lies on the circle of radius r the sum in (14.3) reduces to

n∑
k=1

|z − zk|2 = 2nr2, (14.4)

a generalization of the Pythagorean Theorem, which is the special case n = 2.
Another interesting special case occurs when z is one of the vertices. Then one

term in the sum in (14.4) vanishes, and we obtain:

ApostolGeoChapter 14_v2.indd   4ApostolGeoChapter 14_v2.indd   4 10/3/12   12:19 PM10/3/12   12:19 PM



14.1. A LOCUS PROBLEM IN THE PLANE 447

Theorem 14.2. The sum of the squares of the n − 1 segments drawn from one
vertex of a regular n-gon to the remaining vertices is equal to 2nr2, where r is the
radius of the circumscribing circle.

We have already used Theorem 14.2 in Chapter 3 to calculate cycloidal ar-
eas without calculus. The same argument used to prove Theorem 14.1 (using dot
products of vectors instead of complex numbers) also solves a corresponding locus
problem in 3-space:

Given a finite set of fixed points in 3-space, what is the locus of a point moving
in such a way that the sum of the squares of its distances from the fixed points is
constant?

As expected, the answer is a direct extension of Theorem 14.1. The locus is a
sphere whose center is at the centroid of the fixed points (if we allow the empty set
and a single point as degenerate cases of a sphere).

The two locus problems provide motivation for the rest of this chapter, which
discusses several remarkable formulas for sums of squares of distances in a finite-
dimensional space, with applications to geometry. The concept of centroid described
in Chapter 12 plays an important role.

Application to a minimizing problem.

Figure 14.1a illustrates a classical minimizing problem. Given a line L and two
points A and B on the same side of L. Which point P on L minimizes the sum of
distances AP +BP? It is well known that the solution is obtained by the reflection
principle: At the minimizing point the two angles shown in Figure 14.1a are equal.

A different question for the same configuration is illustrated in Figure 14.1b:

Which point P on L minimizes the sum of squares of distances AP 2 +BP 2?

L L

A

B

P P

A

B

(a) (b)

Figure 14.1: To minimize (a) sum of distances; (b) sum of squares of distances.

To answer this question we turn to the locus problem mentioned in the opening
paragraph. The locus of all points in the plane for which the sum of squares is
constant is a circle with its center C midway between A and B, and the constant is
proportional to the square of the radius of the circle. Figure 14.2a shows a circle with
center at C tangent to L. The point of tangency P minimizes the sum of squares,
because all other points on L are outside the circle and therefore have larger sum
of squares of distances from A and B. To construct P drop a perpendicular from
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448 Chapter 14. SUMS OF SQUARES

C to line L. Incidentally, for this problem A and B need not be on the same side
of L.

A similar argument for minimizing the sum of distances AP + BP is shown in
Figure 14.2b. In this case the sum of distances is constant on an ellipse with foci
at A and B, with its major axis proportional to the constant sum. Consequently,
the point of tangency P of the ellipse with L minimizes AP +BP , and the known
reflection property of the ellipse gives equality of the two angles in Figure 14.2b. By
contrast, the corresponding angles in Figure 14.2a are not always equal. Instead,
the projections of AP and BP on L are equal, as suggested by the tick marks.

P

A

B

A

B

P

C

L L

(a) (b)

Figure 14.2: Minimizing (a) sum of squares of distances; (b) sum of distances.

The problem of minimizing the sum of squares can be extended in many ways.
It is not necessary that A and B be coplanar with L. In fact, if we have n points
in 3-space, the point P on a given line L that minimizes the sum of squares of the
n distances from the points to L is obtained by dropping a perpendicular from the
centroid C of the n points to that line. Moreover, the line L can be replaced by a
space curve, a plane, or any surface. The normal from centroid C to L gives a local
extremum of the sum of squares of distances. By contrast, the same question for
the sum of distances is extremely difficult to analyze, even for three points.

14.2 FIRST BASIC THEOREM ON SUMS OF SQUARES OF
DISTANCES IN m-SPACE

We begin with n arbitrary points r1,. . ., rn, regarded as position vectors in Eu-
clidean m-space. Let w1, . . ., wn, be n positive numbers regarded as weights at-
tached to these points, and let c denote the weighted average position vector (or
weighted centroid) defined by

n∑
k=1

wkrk = Wc (14.5)

where

W =
n∑

k=1

wk (14.6)

is the sum of the weights. Then we have:
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Theorem 14.3. If r1, . . ., rn are n points in m-space with weighted average c,
and if z is an arbitrary point, then

n∑
k=1

wk|z − rk|2 =
n∑

k=1

wk|c− rk|2 +W |c− z|2. (14.7)

Proof. We give a simple proof using dot products of vectors. The kth term of
the sum on the left is

wk|z − rk|2 = wk(z − rk) · (z − rk) = wk(|z|2 + |rk|2 − 2z · rk).

Similarly, the kth term of the sum on the right is

wk|c− rk|2 = wk(|c|2 + |rk|2 − 2c · rk),

and their difference is

wk|z − rk|2 − wk|c− rk|2 = wk(|z|2 − |c|2) + 2wk(c− z) ·rk .

Summing on k and using (14.5) and (14.6), we find that

n∑
k=1

wk|z − rk|2 −
n∑

k=1

wk|c− rk|2 = W (|z|2 − |c|2) + 2W (c− z)·c

= W (|z|2 + |c|2 − 2z · c) = W |c− z|2,
which gives (14.7).

When m = 2, Theorem 14.3 is related to a result in classical mechanics called
Steiner’s parallel-axis theorem, which states that the moment of inertia of a rigid
body about an arbitrary axis is equal to the moment of inertia about a parallel
axis through the center of mass of the body, plus the mass times the square of the
distance between the two axes. Theorem 14.3 can be regarded as both a discrete
analog of the parallel-axis theorem and an extension of it to higher dimensions.

An application to physics.

For an application of Theorem 14.3 to physics, let each point rk be a center of
attraction with a force acting on a particle z according to Hooke’s law:

F k = −wk(z − rk). (14.8)

This can be realized by an ideal spring or rubber band pulling particle z towards
rk with a force whose magnitude is proportional to the distance between them. In
this context, the scalar wk is called Hooke’s coefficient, or the elasticity coefficient.

Now assume a particle z is attracted to each of n centers r1, . . ., rn according
to Hooke’s law, each with its own Hooke’s coefficient. The total potential energy
U(z) of particle z due to the attraction of all points r1, . . ., rn can be defined by
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450 Chapter 14. SUMS OF SQUARES

U(z) =
1

2

n∑
k=1

wk|z − rk|2. (14.9)

The locus of points z for which U(z) is a constant (independent of z) is called
an equipotential surface. The sum in (14.9) appears on the left of (14.7). The first
term on the right of (14.7) does not depend on z, hence U(z) is constant if and only
if the second term W |c− z|2 is constant. Therefore, the equipotential surface is a
sphere with center at the weighted centroid c. This yields the following astonishing
result: For any finite collection of fixed centers that attract by Hooke’s law, the
equipotential surfaces are spheres with center at the weighted centroid.

From (14.8) we find that the resultant force F (z) of the centers acting on a
particle is

F (z) =
n∑

k=1

F k = −
n∑

k=1

wk(z − rk).

Replace the difference z − rk by (z − c) + (c − rk) and use (14.5) and (14.6) to
obtain the simple formula F (z) = −W (z − c).

Thus the resultant is a central force directed toward c, with its magnitude
proportional to the distance of the particle from c. In this case, it is known that
the particle moves along an ellipse with its center at c. Also, as shown in Section
1.16, its angular momentum is conserved.

The problem treated at the end of Section 14.1 on minimizing the sum of squares
of distances can be realized physically as shown by the diagram in Figure 14.3a.
Here two ideal rubber bands (subject to Hooke’s law) join points A and P , and B
and P , where P is attached to a ring surrounding a fixed horizontal rod L. The
ring is free to slide along L, and at each position on L the ring is attracted to A
and B by Hooke’s law. The ring will reach an equilibrium point when the potential
energy is a minimum. Because the potential energy is proportional to the sum of
squares of distances from the ring to A and B, minimizing the potential energy is
equivalent to minimizing the sum of squares of distances. As shown earlier, this
occurs when the ring is at the point where the perpendicular through the centroid
C intersects L.

C
A

B

C
A

B

F

(a) (b)

L

P P

F
F

A
B

Figure 14.3: (a) Minimizing potential energy. (b) Equilibrium of an ideal rubber band.
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An alternative solution is presented in Figure 14.3b, where two forces indicated
by FA and FB act on P . By Hooke’s law, their magnitudes are proportional to the
lengths AP and BP . Their resultant F is determined by the parallelogram law. For
equilibrium the resultant F must be perpendicular to L at P . Also, the horizontal
components of FA and FB must be equal and opposite. Consequently, F passes
through the point C midway between A and B, in agreement with the solution in
Figure 14.3a.

Sums of the type in Theorem 14.3 also occur in other physics problems related
to kinetic energy of a system of particles (where the vectors rk represent velocities),
and in angular momentum problems (where the rk represent position vectors and
the wk are proportional to the mass times the angular speed of the particle).

They also occur in probability theory. If the weight wk represents the probability
that a random variable takes the value rk, then c is the mathematical expectation of
the random variable, and

∑n
k=1 wk|c−rk|2 is its variance (see [39]). Although most

of the applications in this chapter are confined to geometry, the scope of possible
applications is much larger.

14.3 SECOND BASIC THEOREM

The next result, a consequence of Theorem 14.3, provides another fundamental
relation that is basic to all applications in this chapter. Before stating it we establish
a notation convention. We use the symbol

∑
k<i as an abbreviation for the double

sum
n∑

i=2

i−1∑
k=1

.

Theorem 14.4. Let r1, . . ., rn be n points in m-space with weighted average c.
Then ∑

k<i

wiwk|ri − rk|2 = W

n∑
k=1

wk|z − rk|2 −W 2|c− z|2, (14.10)

where z is arbitrary. In particular, when z = O this becomes

∑
k<i

wiwk|ri − rk|2 = W

n∑
k=1

wk|rk|2 −W 2|c|2, (14.11)

and when z = c it reduces to

∑
k<i

wiwk|ri − rk|2 = W
n∑

k=1

wk|c− rk|2. (14.12)

Proof. Taking z = ri in (14.7), we obtain

n∑
k=1

wk|ri − rk|2 =
n∑

k=1

wk|c− rk|2 +W |c− ri|2
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for i = 1, 2, . . . , n where, of course, the term with k = i in the first sum is zero.
Now multiply by wi and sum on i to get

n∑
i=1

n∑
k=1

wiwk|ri − rk|2 = W
n∑

k=1

wk|c− rk|2 +W
n∑

i=1

wi|c− ri|2

= 2W

n∑
k=1

wk|c− rk|2.

This is equivalent to (14.12), because each term in the double sum appears twice.
Now from (14.7) we have

W
n∑

k=1

wk|c− rk|2 = W
n∑

k=1

wk|z − rk|2 −W 2|c− z|2,

which, when substituted for the right-hand member of (14.12), gives (14.10).

Equal weights.

When all weights are equal, the weighted average c is the centroid of the set of
points, and the foregoing relations connect sums of squares of distances among given
points with squares of distances involving their centroid c. If each wk = w, say,
then W = nw, and the common factor w cancels in each of the foregoing equations,
which can now be written as indicated in equations (14.7′) through (14.12′).

From (14.7) we find that for any z in m-space,

n∑
k=1

|z − rk|2 =
n∑

k=1

|c− rk|2 + n|c− z|2. (14.7′)

Specializing (14.10), (14.11), and (14.12) to equal weights we get:

∑
k<i

|ri − rk|2 = n
n∑

k=1

|z − rk|2 − n2|c− z|2 (14.10′)

for any z in m-space,

∑
k<i

|ri − rk|2 = n
n∑

k=1

|rk|2 − n2|c|2, (14.11′)

and ∑
k<i

|ri − rk|2 = n

n∑
k=1

|c− rk|2, (14.12′)

which gives an exact relation connecting the sum of the squares of distances between
arbitrary points r1, . . ., rn in m-space with the sum of squares of their distances
from the centroid.

For points in a plane, (14.11′) and (14.12′) can be found in Steiner [65, p. 108,
(VI) and (VII)], and we thought their extensions to higher-dimensional space must
surely be known. But our search of the literature did not uncover these exact
formulas involving the centroid, even for three-dimensional space.
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14.4 APPLICATIONS TO GEOMETRY

The importance of the foregoing results is revealed by a multitude of applications,
some of which may be new.

Example 1 (Distances between arbitrary points). The exact relation in
(14.11′) implies the inequality

n∑
k=1

|rk|2 ≥ 1

n

∑
k<i

|ri − rk|2, (14.13)

with equality if and only if the centroid c is at the origin. This tells us that the sum
of squares of distances from a given point O to n fixed points r1, . . ., rn is minimal
when O is at their centroid, and the minimal value is the right-hand side of (14.13).
This remarkable result was observed by Steiner for points in a plane (m = 2), but
might not have been previously recorded for m > 2.

Example 2 (Points contained on a sphere in m-space). If r1, . . ., rn and
z lie on a sphere of radius R with center at the origin, and if c = O, (14.7′) reduces
to

n∑
k=1

|z − rk|2 = 2nR2,

a generalization of the Pythagorean Theorem (which is the special case n = 2 when
r1 + r2 = O).

Now consider the case when all points rk lie inside or on a sphere of radius R
with center at the origin. Then |rk| < R if rk is inside the sphere, and |rk| = R if
rk is on the sphere, so the sum on the left of (14.13) has the upper bound

n∑
k=1

|rk|2 ≤ nR2,

with equality if and only if all rk are on the sphere. Equation (14.11′) now gives
us:

Theorem 14.5. For points r1, . . ., rn in m-space with centroid c lying inside or
on a sphere of radius R with center at the origin, the sum of the squares of distances
|ri − rk| satisfies the inequality

∑
k<i

|ri − rk|2 ≤ n2(R2 − |c|2), (14.14)

with equality if and only if all points r1, . . ., rn are on the sphere, in which case

∑
k<i

|ri − rk|2 = n2(R2 − |c|2). (14.15)

ApostolGeoChapter 14_v2.indd   11ApostolGeoChapter 14_v2.indd   11 10/3/12   12:19 PM10/3/12   12:19 PM



454 Chapter 14. SUMS OF SQUARES

This result provides a solution of Problem A4 of the 29th William Lowell Putnam
Mathematical Competition [56], which asked to show that the sum of the squares
of the n(n − 1)/2 distances between a n distinct points on the surface of a unit
sphere in 3-space is at most n2. (See also [33] and 9.7 in [58], and our treatment
in Section 12.7.) The explicit appearance of the centroid in (14.15) gives a deeper
understanding of the problem. Equation (14.15) gives an exact formula for the sum
of the squares of the distances between n points, no matter where they are located
on a sphere in m-space, and it tells us that the sum reaches its maximum value
n2R2 when the centroid is at the center of the sphere. This explains the surprising
result that the maximum is independent of the dimensionality of the space. Any
solution of the problem for n points lying on a circle is also a solution for n points
lying on a sphere in m-space for all m ≥ 3.

Example 3 (Sum of squares of edge lengths of a simplex). A simplex in
m-space contains exactly m + 1 vertices r1, r2, . . . , rm+1 (which always lie on the
circumscribed sphere), and exactly(

m+ 1

2

)
=

m(m+ 1)

2

edges joining the vertices. Then |ri − rk| is the length of the edge joining ri and
rk, and |c− rk| is the distance from the centroid c to vertex rk. Equation (14.12′)
asserts that the sum of the squares of the lengths of the edges of a simplex is exactly
m+1 times the sum of the squares of the distances from the centroid to the vertices.
Inequality (14.13) now implies the inequality

∑
k<i

|ri − rk|2 ≤ (m+ 1)
m+1∑
k=1

|rk|2, (14.16)

and tells us that the same sum is no more than m+1 times the sum of the squares
of the distances from any point O to the vertices, with equality if and only if point
O is the centroid.

In particular, (14.16) implies that in 2-space the sum of the squares of the lengths
of the edges of any triangle is three times the sum of the squares of the distances
from the centroid to the vertices, and no more than three times the sum of the
squares of the distances from a point in the plane to the vertices. These properties
of the triangle are known, but we were unable to locate the corresponding results
in the literature for a tetrahedron or for any higher-dimensional simplex.

Example 4 (Sum of edge lengths of a simplex). The results in Example
3 for the sum of squares of the edge lengths of a simplex lead to upper bounds
for the sum of the edge lengths themselves. The connection is provided by the
Cauchy-Schwarz inequality, which states that

(u · v)2 ≤ |u|2|v|2 (14.17)

for any two vectors u and v in a finite-dimensional Euclidean space, with equality
if and only if one of the vectors is a scalar multiple of the other. We use (14.15) to
prove the following lemma concerning the sum of edge lengths of a simplex.
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Lemma 1. The square of the sum of the edge lengths of a simplex in m-space is
less than or equal to the number of edges times the sum of squares of the lengths of
its edges, with equality if and only if the simplex is regular.

Proof. Denote the edge lengths of a simplex in m-space by d1, d2, . . . , dN , where
N = m(m+ 1)/2 is the number of edges, and consider the following two vectors in
N -space:

u = (1, 1, . . . , 1), v = (d1, d2, . . . , dN ).

Then (14.17) gives us

(
N∑

k=1

dk)
2 ≤ N

N∑
k=1

d2k, (14.18)

with equality if and only if d1 = d2 = · · · = dN .
Because |ri − rk| is the length of the edge joining ri and rk, (14.18) becomes

(
∑
k<i

|ri − rk|)2 ≤ m(m+ 1)

2

∑
k<i

|ri − rk|2, (14.19)

with equality if and only if the simplex is regular.
In particular, when m = 2, this is a well-known inequality [58; p.147]. It states

that the square of the perimeter of any triangle is less than or equal to three times
the sum of the squares of the lengths of its edges, with equality if and only if the
triangle is equilateral. Its three-dimensional counterpart says that the square of
the sum of all the edge lengths of a tetrahedron is less than or equal to six times
the sum of the squares of the lengths of its edges, with equality if and only if the
tetrahedron is regular.

Taking square roots in (14.19), we are led to a basic inequality relating the sum
of edge lengths of a simplex with the sum of squares of edge lengths:

∑
k<i

|ri − rk| ≤
√

m(m+ 1)

2

∑
k<i

|ri − rk|2, (14.20)

with equality if and only if the simplex is regular.
Using (14.12′) and (14.11′) for the sum of squares of edge lengths in (14.20),

we discover corresponding results for the sum of edge lengths themselves, which we
collect in the following theorem.

Theorem 14.6. Let r1, r2, . . ., rm+1 be the vertices of a simplex in m-space with
centroid c. Then the sum of edge lengths satisfies the two inequalities

∑
k<i

|ri − rk| ≤ (m+ 1)

√√√√m

2

m+1∑
k=1

|c− rk|2, (14.21)

and

∑
k<i

|ri − rk| ≤ (m+ 1)

√√√√m

2

m+1∑
k=1

|rk|2 − (m+ 1)|c|2, (14.22)
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456 Chapter 14. SUMS OF SQUARES

with equality in each case if and only if the simplex is regular and c is at the origin.
When c = O they reduce to

∑
k<i

|ri − rk| ≤ (m+ 1)

√√√√m

2

m+1∑
k=1

|rk|2, (14.23)

with equality if and only if the simplex is regular.

Now suppose that each vertex of the simplex lies inside or on a sphere of radius
R with center at the origin. Then we can use (14.14) from Theorem 14.5 (with
n = m+ 1) in the right-hand side of (14.22) to obtain

∑
k<i

|ri − rk| ≤
√

m(m+ 1)

2
(m+ 1)

√
R2 − |c|2. (14.24)

Equality holds in (14.24) if and only if the simplex is regular and has its vertices
on the sphere, in which case c = O and we get

∑
k<i

|ri − rk| ≤
√

m(m+ 1)

2
(m+ 1)R (14.25)

for the sum of edge lengths. This agrees with a result found by Chakerian and
Klamkin [33], who showed that among all simplices inscribed in the unit sphere,
the regular simplex has maximum total edge length. If d denotes the common value
of the edge lengths, the left-hand side of (14.25) is dm(m+1)/2, and with equality
in (14.25) we find that

d =

√
2(m+ 1)

m
R.

This expresses the length d of one edge of a regular simplex in m-space in terms
of the radius R of the circumscribing sphere.

When m = 2, (14.25) gives 3
√
3R as the maximum perimeter of a triangle

inscribed in a circle of radius R, and the maximum is achieved for an equilateral
triangle, in which case d =

√
3R. The corresponding maximum sum of edge lengths

for a tetrahedron in 3-space is 4
√
6R, achieved for an inscribed regular tetrahedron

of edge length d =
√
8/3R.

The formula for d enables us to find the angle between two radii drawn from the
center of the tetrahedron to the endpoints of one edge. The result is π−arccos(1/3).
The corresponding result in m-space is given by π − arccos(1/m). The distance d
and the angle between two radii can also be calculated directly using elementary
trigonometry but this requires much more effort. (Try it!)
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14.5 COMPOSITE SYSTEMS

This section uses Theorem 14.3 to deduce a fundamental property of a concept we
call the intrinsic second moment. If w1, w2, . . . , wn are n positive weights attached
to n points r1, r2, . . ., rn inm-space with weighted average position vector c defined
by (14.5), we refer to the quantity

I =
n∑

k=1

wk|rk − c|2 (14.26)

as the intrinsic second moment of the system.
A system of n1 points r1, r2, . . ., rn1 in m-space with weights of sum W1,

average position vector c1, and intrinsic second moment I1, taken together with
a disjoint system of n2 points rn1+1, rn1+2, . . ., rn1+n2 with weights of sum W2,
average position vector c2, and intrinsic second moment I2, forms a composite
system consisting of n1 + n2 points with average position vector c and intrinsic
second moment I. The intrinsic second moments are related as follows:

Theorem 14.7. The intrinsic second moment of a composite system is related to
the intrinsic second moments of the component systems by

I = I1 + I2 +
W1W2

W1 +W2
|c1 − c2|2. (14.27)

The quantity W1W2/(W1 + W2) is called the reduced weight of the composite
system (by analogy with reduced mass in physics). Equation (14.27) states that the
intrinsic second moment of a composite body is equal to the sum of the intrinsic
second moments of the component parts plus the reduced weight times the square
of the distance between their average position vectors. For m = 2, this is a known
result for the moment of inertia of a composite body.

Proof. The definition in (14.26) with n = n1 + n2 gives us

I =
∑
(1)

wk|rk − c|2 +
∑
(2)

wk|rk − c|2,

where
∑

(1) signifies a sum taken over the n1 points in one system, and
∑

(2) indi-
cates summation over the n2 points in the other. Applying Theorem 14.3 to each
sum on the right with z = c, we obtain

∑
(1)

wk|rk − c|2 =
∑
(1)

wk|rk − c1|2 +W1|c1 − c|2,

and there is a corresponding formula for
∑

(2). Adding them, we find

I = I1 + I2 +W1|c1 − c|2 +W2|c2 − c|2,
so to prove (14.27) it suffices to show that

W1|c1 − c|2 +W2|c2 − c|2 =
W1W2

W1 +W2
|c1 − c2|2. (14.28)
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From (14.5) we have (W1 +W2)c = W1c1 +W2c2, hence the three averages c, c1,
and c2 are collinear, and W1(c− c1) = W2(c2 − c), which implies that

W1|c− c1| = W2|c2 − c| (14.29)

and
|c− c1|+ |c2 − c| = |c1 − c2|. (14.30)

Solving for |c2 − c| and substituting in (14.29), we obtain

(W1 +W2)|c− c1| = W2|c1 − c2|,
from which we conclude that

W1|c− c1| = W1W2

W1 +W2
|c1 − c2|. (14.31)

Now return to the left-hand member of (14.28) and rewrite it as:

(W1|c1 − c|)|c1 − c|+ (W2|c2 − c|)|c2 − c|.
By (14.29) we can replace W2|c2 − c| in the second term with W1|c1 − c| and the
sum becomes

(W1|c1 − c|)(|c1 − c|+ |c2 − c|) =

(W1|c1 − c|)(|c1 − c2|) = W1W2

W1 +W2
|c1 − c2|2,

where we have used (14.30) and (14.31). This proves (14.28) and hence (14.27).

Relations not requiring the average position vector.

Although the intrinsic second moment is defined by (14.26) in terms of the average
position vector c, it can also be expressed in a form that does not involve c, but
only distances between points of the body. In fact, by using (14.12) of Theorem
14.4 in (14.26) we arrive at the expression

I =
1

W

∑
k<i

wiwk|ri − rk|2, (14.32)

and similar formulas hold for I1 and I2. Now multiply each side of (14.27) by
W = W1 +W2 and rewrite it in the alternative form

∑
k<i

wiwk|ri − rk|2 =
W

W1

∑
(1)

+
W

W2

∑
(2)

+W1W2|c1 − c2|2, (14.33)

where the sum on the left is extended over all points of the composite system, while∑
(1) and

∑
(2) are the corresponding sums with the same summand wiwk|ri−rk|2

but extended over the points of the respective component system. But we also have
∑
k<i

wiwk|ri − rk|2 =
∑
(1)

+
∑
(2)

+
∑
(1,2)

,
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where
∑

(1,2) signifies summation with the same summand over vectors ri − rk
joining points from different component systems. Use this to replace the left-hand
side of (14.33), and solve for

∑
(1,2) to obtain

∑
(1,2)

=
W2

W1

∑
(1)

+
W1

W2

∑
(2)

+W
1
W2|c1 − c2|2. (14.34)

In other words, the double sum
∑

k<i wiwk|ri−rk|2 extended over segments joining
points ri and rk taken from two different component systems is a linear combination
of sums extended over the separate systems plus the product of the weights times the
square of the distance between the average position vectors of the two systems. This
can be used to calculate the distance |c1−c2| without knowing c1 and c2 explicitly.
And, if (14.34) is combined with (14.31), we can also compute the distance |c− c1|
without knowing c or c1. In this case the formula for |c− c1| becomes

|c− c1|2 =
1

W 2W 2
1

(W1W2

∑
(1,2)

−W 2
2

∑
(1)

−W 2
1

∑
(2)

), (14.35)

with summand wiwk|ri − rk|2 in each sum on the right.

14.6 EQUAL WEIGHTS: APPLICATIONS TO GEOMETRY

This section considers composite systems having equal weights, with the total weight
of each system replaced by the corresponding number of points n1, n2 and n =
n1 + n2. Formulas (14.33) and (14.37) of Section 14.5 have interesting applications
to geometry.

Example 5 (General simplex). Anm-dimensional simplex withm+1 vertices
can be regarded as a composite system made up of two parts, one part having
exactly one vertex, which is also its centroid c1, and the other part consisting of
the remaining m vertices. Using (14.35) to determine the distance from c1 to the
centroid c of the entire simplex, we find that

|c− c1| = 1

m+ 1

√
m

∑
(1,2)

−
∑
(2)

,

a result consistent with (14.7′) when n = m+ 1 and z = c1. In this case,
∑

(1,2) is

the sum of squares of distances from c1 to all adjacent vertices,
∑

(1) is zero, and∑
(2) is the sum of squares of all the remaining edges. For example, for a triangle

(m = 2) with edges of lengths a1, a2, and a3, where a1 and a2 are the lengths of
the edges adjacent to c1, we have

|c− c1| = 1

3

√
2(a21 + a22)− a23.

The corresponding formula for a tetrahedron (m = 3) is

|c− c1| = 1

4

√
3(a21 + a22 + a23)− (a24 + a25 + a26)
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where a1, a2, and a3 are the lengths of the edges adjacent to c1 and a4, a5, and a6
are the lengths of the remaining edges.

Example 6 (Quadrilaterals). Let r1, r2, r3 and r4 be four distinct points
in m-space. Take r1 and r2 as one system, and r3 and r4 as another. Use equal
weights, let c1 be the midpoint of the segment joining r1 and r2, and let c2 be the
midpoint of the segment joining r3 and r4. Equation (14.34) now becomes

|r1 − r3|2 + |r1 − r4|2 + |r2 − r3|2 + |r2 − r4|2

= |r1 − r2|2 + | r3 − r4|2 + 4 |c1 − c2|2. (14.36)

The points r1, r2, r3, r4 can be regarded as the vertices of a quadrilateral, with the
sum on the left being the sum of the squares of the lengths of the four edges, and
the first two terms on the right being the sum of the squares of the two diagonals.
Equation (14.36) states that the sum of the squares of the edges exceeds the sum
of the squares of the diagonals by four times the square of the distance between the
midpoints of the diagonals. This extends a well-known planar result to m-space.
It also shows that the sum of the squares of the diagonals is at most the sum of
the squares of its four edges, with equality if and only if c1 = c2. The latter
occurs only when the diagonals bisect each other, that is, when the quadrilateral
is a parallelogram lying in a plane. Example 7 gives a corresponding result for
hexagons.

Tetrahedron problem. Figure 14.4a shows an application of (14.36) to a problem
involving a general tetrahedron. Take an arbitrary tetrahedron in 3-space whose six
edge lengths are known. The problem is to find the length of the segment joining
midpoints of a pair of opposite sides.

Solution. In Figure 14.4a, the edges have lengths a, b, c, d, e, f with e and f
representing one pair of opposite edges. By applying (14.36) we find that the length
of the segment joining their midpoints is equal to

1

2

√
a2 + b2 + c2 + d2 − e2 − f2,

regardless of how the other four edges are ordered.

Equilibrium problem. Figure 14.4b shows two rigid rods AB and CD in 3-space
with their endpoints connected by ideal rubber bands as indicated. Now the problem
is to determine the equilibrium configuration of the rods.

Solution. The two rods form the diagonals and the four rubber bands form the
edges of a quadrilateral satisfying (14.36). Because potential energy is proportional
to the sum of squares of the edges, its minimum will be reached when the centroids of
the two rods coincide. This will provide the equilibrium configuration in the form of
a parallelogram with the rods as diagonals bisecting each other. The parallelogram is
not unique: the minimum potential energy is the same for all possible parallelograms
regardless of the angle between the diagonal rods. This is a surprising example of
what is known as indifferent equilibrium.
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Figure 14.4: (a) Tetrahedron problem. (b) and (c): Equilibrium problems.

Example 7 (Hexagons). Let r1, r2, . . ., r6 be six distinct points in m-space
joined in sequence to form a hexagon. Vertices r1, r3, and r5 form one triangle
with centroid c1, and vertices r2, r4, and r6 form another triangle with centroid c2.
In general, the triangles are in different planes, and they may or may not intersect.
The hexagon has six minor diagonals that form the edges of the two triangles, plus
three major diagonals joining r1 and r4, r2 and r5, and r3 and r6, respectively.
Take equal weights and use the abbreviation r2ij for |ri− rj |2, and (14.34) becomes

(r212 + r223 + r234 + r245 + r256 + r261) + (r214 + r225 + r236)

= (r213 + r235 + r251 + r224 + r246 + r262) + 9|c1 − c2|2.

This states that the sum of squares of the six edges and the three major diagonals
of a hexagon exceeds the sum of the squares of its six minor diagonals by nine times
the square of the distance between the centroids of the vertices of the two triangles.
Equality holds if and only if the two centroids coincide, although the hexagon need
not in that case be flat.

Equilibrium problem. Figure 14.4c shows two triangles ABC and A′B′C ′, not
necessarily coplanar, whose edges are rigid rods. The non-connected vertices are
joined by ideal rubber bands forming a hexagon and its major diagonals as shown.
The rigid edges are minor diagonals of the hexagon. The problem is to determine
the equilibrium configuration of this structure.

Solution. In the last displayed formula, the terms on the left represent the sum of
squares of the edges of the hexagon and its major diagonals. It reaches its minimum
when the centroids of the vertices of the two triangles coincide, because the sum
of squares of minor diagonals on the right is fixed. This gives another example of
indifferent equilibrium, independent of the relative spatial orientation of the rigid
triangles, as long as their centroids coincide. This is even more surprising than the
parallelogram equilibrium in the quadrilateral case.
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14.7 SUMS OF SQUARES OF INTEGERS IN ARITHMETIC
PROGRESSION

The following striking identities

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

are the cases n = 1, 2, 3, 4 of a remarkable family given in a note by G. J. Dostor
[38]. Dostor’s family is

n−1∑
k=0

(k +m)2 + (m+ n)2 =
n−1∑
k=0

(k +m+ n+ 1)2, (14.37)

where m = n(2n+1), and n = 1, 2, . . . . We assume that m �= −n, because m = −n
implies n = 1, a trivial case. Then there are n + 1 squares of consecutive integers
on the left, and n on the right. We will treat the last term (m + n)2 on the left
differently, and refer to it as a transition term relating two sums of squares of n
consecutive integers.

This section generalizes (14.37) in several simple ways, including extensions to
arithmetic progressions. All are based on the elementary factorization formula

x2 − y2 = (x− y)(x+ y).

First generalization of (14.37): change of transition term.

Given an integer r ≥ 1, we show that integer n and rational m exist (depending on
r) satisfying the family of identities

n−1∑
k=0

(k +m)2 + (m+ n)2r2 =
n−1∑
k=0

(k +m+ n+ 1)2. (14.38)

This is like Dostor’s family, except that the new transition term has a factor r2,
and m is a new parameter.

To see that m and n exist, take the difference of the sums in (14.38) and factor
(k +m+ n+ 1)2 − (k +m)2 to obtain

n−1∑
k=0

(n+ 1)[2(k +m) + n+ 1] = 2n(n+ 1)(m+ n).

This equals (m+ n)2r2 if and only if 2n(n+1) = r2(m+ n), which is equivalent to

m =
2n(n+ 1)

r2
− n. (14.39)
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14.7. INTEGERS IN ARITHMETIC PROGRESSION 463

Therefore, (14.38) is valid for every choice of positive integers r and n and
rational m satisfying (14.39). In (14.38), there are n consecutive squares on the
left, plus a transition term (m+ n)2r2, and n consecutive squares on the right.

If m = a/b where a and b are integers, then (14.38) can be written as

n−1∑
k=0

(bk + a)2 + (bn+ a)2r2 =
2n∑

k=n+1

(bk + a)2, n = 1, 2, 3, . . . , (14.40)

where now each sum contains squares of n integers in arithmetic progression. Be-
cause the number bn + a in the transition term is midway between b(n − 1) + a
and b(n+ 1) + a, we say that (14.40) has a symmetry property with respect to the
transition term.

When b = 1, then a = m, an integer, and (14.40) gives (14.38) with consecutive
squares starting with m2 on the left. From (14.39) we see that m is an integer
whenever r2 divides the product 2n(n+1). So we can always choose n(n+1) to be
a multiple of r2 and find corresponding integer values of m.

Examples with r = 1. If r = 1, then m = n(2n + 1), and family (14.38) is
the same as Dostor’s family (14.37).

Examples with r = 2. If r = 2, then m = n(n − 1)/2, which is always an
integer. The case n = 1 is trivial, and n = 2, 3, 4, yield

12 + 22 + 32 · 22 = 42 + 52

32 + 42 + 52 + 62 · 22 = 72 + 82 + 92

62 + 72 + 82 + 92 + 102 · 22 = 112 + 122 + 132 + 142.

Examples with r = 3. If r = 3, integer solutions m exist in (14.39) if
n = 9N − 1 or if n = 9N for some integer N . The two smallest positive n with
n = 9N − 1 are n = 8,m = 8, and n = 17, m = 51, yielding:

82 + 92 + · · ·+ 152 + 162 · 32 = 172 + 182 + · · ·+ 242

512 + 522 + · · ·+ 672 + 682 · 32 = 692 + 702 + · · ·+ 852.

The two smallest with n = 9N are n = 9, m = 11, and n = 18, m = 58:

112 + 122 + · · ·+ 192 + 202 · 32 = 212 + 222 + · · ·+ 292

582 + 592 + · · ·+ 752 + 762 · 32 = 772 + 782 + · · ·+ 942.

If n = 2 and 3, the values ofm from (14.39) arem = −2/3 andm = −1/3, giving
the following two identities involving squares of integers in arithmetic progression:

(−2)2 + 12 + 42 · 32 = 72 + 102

(−1)2 + 22 + 52 + 82 · 32 = 112 + 142 + 172.

If n = 4, 5, and 6 the values of m from (14.39) are m = 4/9,m = 5/3, and m = 10/3
and we get the identities
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42 + 132 + 222 + 312 + 402 · 32 = 492 + 582 + 672 + 762

52 + 82 + 112 + 142 + 172 + 202 · 32 = 232 + 262 + 292 + 322 + 352

102 + 132 + 162 + 192 + 222 + 252 + 282 · 32 = 312 + 342 + 372 + 402 + 432 + 462.

The foregoing examples show how easy it is to produce families from (14.38) or
(14.40) for each integer r. All the identities exhibit the symmetry property with
respect to the transition term.

Second generalization of (14.37): introduction of a shift parameter.

We introduce a new parameter d. For an integer n and real m and d we have the
family of identities

n−1∑
k=0

(k +m)2 + nd(2c+ d) =

n−1∑
k=0

(k +m+ d)2, (14.41)

where c is the arithmetic mean:

c =
1

n

n−1∑
k=0

(k +m). (14.42)

The proof of (14.41) is obtained by summing both members of the factorization
formula

(k +m+ d)2 − (k +m)2 = d(2k + 2m+ d).

When m and d are integers, both sums in (14.41) involve squares of n consecutive
integers, those on the right being shifted by d. In this case, the transition term
nd(2c + d) is also an integer because it is the difference of two integers. We are
interested only in examples where the transition term is also a square, although it
may not be consecutive with the other squares in the identity.

If m is rational, say m = a/b, then (14.41) becomes

n−1∑
k=0

(bk + a)2 + b2nd(2c+ d) =
n−1∑
k=0

(bk + a+ bd)2. (14.43)

The terms bk + a on the left are in arithmetic progression, and those on the right
are shifted by bd. The identity is of interest when the transition term is the square
of an integer, which again occurs when nd(2c + d) is a square. To find examples
of (14.43) for which nd(2c + d) is a square, we express the arithmetic mean c in
terms of the parameters m and n. From (14.42) we find that 2c = n − 1 + 2m. If
g = d− n, then d = n+ g, and the transition term in (14.41) takes the form

nd(2c+ d) = 2n(n+ g)(n+m+
g − 1

2
).

ApostolGeoChapter 14_v2.indd   22ApostolGeoChapter 14_v2.indd   22 10/3/12   12:19 PM10/3/12   12:19 PM



14.7. INTEGERS IN ARITHMETIC PROGRESSION 465

Symmetric families; symmetry requirement for the transition term.

In (14.41), the average of n − 1 +m and m + d is (n +m + g−1
2 ), and we get the

symmetry property with respect to the transition term if and only if

2n(n+ g)(n+m+
g − 1

2
) = (n+m+

g − 1

2
)2r2

for some integer r ≥ 1. This is equivalent to

(n+m+
g − 1

2
)r2 = 2n(n+ g), (14.44)

or

m =
2n(n+ g)

r2
− n− g − 1

2
. (14.45)

We are interested in positive integer values of the parameters n, r, and g. The
number m determined by (14.45) can be positive, negative, or 0. If m = a/b, where
a and b are integers with b > 0, (14.41) becomes the following identity with squares
of integers in arithmetic progression in each sum:

n−1∑
k=0

(bk + a)2 + b2(n+m+
g − 1

2
)2r2 =

n−1∑
k=0

(bk + a+ bn+ bg)2. (14.46)

When g is odd, the transition term is also the square of an integer. In particular,
if g is odd and b = 1, then a = m and each sum in (14.46) contains squares of n
consecutive integers,

n−1∑
k=0

(k +m)2 + (n+m+
g − 1

2
)2r2 =

2n−1∑
k=n

(k +m+ g)2, (14.47)

with the terms shifted symmetrically with respect to the transition term.

Examples with g = 1. In this case, (14.45) reduces to (14.39), which gives
(14.38) and (14.40) for any integer r ≥ 1.

Examples with g = 3. Now (14.45) becomes

m =
2n(n+ 3)

r2
− n− 1.

If g = 3 and r = 1, then m = 2n2 + 5n− 1, and family (14.47) takes the form

n−1∑
k=0

(k + 2n2 + 5n− 1)2 + (2n2 + 6n)2 =

2n−1∑
k=n

(k + 2n2 + 5n+ 2)2. (14.48)

The special cases n = 1, 2, 3 yield
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62 + 82 = 102

172 + 182 + 202 = 222 + 232

322 + 332 + 342 + 362 = 382 + 392 + 402.

If g = 3 and r = 2, then m = (n−1)(n+2)
2 is an integer, and family (14.47) takes

the form

n−1∑
k=0

(k +
(n− 1)(n+ 2)

2
)2 + (n(n+ 3))2 =

2n−1∑
k=n

(k +
n(n+ 1)

2
+ 2)2. (14.49)

The case n = 1 is not interesting, and the special cases n = 2, 3, 4 yield

22 + 32 + 52 · 22 = 72 + 82

52 + 62 + 72 + 92 · 22 = 112 + 122 + 132

92 + 102 + 112 + 122 + 142 · 22 = 162 + 172 + 182 + 192.

Families with n = r2/2. In this case we take r even, say r = 2N , to guarantee
an integer value for n. Then (14.45) implies m = (g + 1)/2. If g is odd, m is an
integer, and if g is even, m is a rational a/b with a = g + 1 and b = 2. Therefore
we separate the cases g odd, and g even.

(a) g odd, m = (g + 1)/2. Family (14.47) now has the transition term given
by (n+ g)2r2, where r = 2N,n = 2N2 :

2N2−1∑
k=0

(k +m)2 + (2N2 + g)2 · (2N)2 =

4N2−1∑
k=2N2

(k +m+ g)2. (14.50)

The smallest N is 1, giving r = 2, n = 2, and (14.50) takes the form

1∑
k=0

(k +m)2 + (2 + g)2 · 22 =
3∑

k=2

(k +m+ g)2.

The values g = 1, 3, 5 yield

12 + 22 + 32 · 22 = 42 + 52

22 + 32 + 52 · 22 = 72 + 82

32 + 42 + 72 · 22 = 102 + 112.

More generally, when N ≥ 2 and g = 1, then m = 1, and (14.50) takes the form

2N2∑
k=1

k2 + (2N2 + 1)2(2N)2 =
4N2+1∑
k=2N+2

k2. (14.51)
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The values N = 2, 3, 4 and g = 1 yield

12 + 22 + 32 + · · ·+ 72 + 82 + 92 · 42 = 102 + 112 + 122 + · · ·+ 162 + 172

12 + 22 + 32 + · · ·+ 172 + 182 + 192 · 62 = 202 + 212 + 222 + · · ·+ 362 + 372

12 + 22 + 32 + · · ·+ 312 + 322 + 332 · 82 = 342 + 352 + 362 + · · ·+ 642 + 652.

When g = 3, then m = 2, and (14.48) can be written as

2N2+1∑
k=2

k2 + (2N2 + 3)2 · (2N)2 =
4N2+4∑

k=2N2+5

k2, (14.52)

which, for N = 1, 2, 3, yield the examples

22 + 32 + 52 · 22 = 72 + 82

22 + 32 + 42 + · · ·+ 82 + 92 + 112 · 42 = 132 + 142 + 152 + · · ·+ 192 + 202

22 + 32 + 42 + · · ·+ 182 + 192 + 212 · 62 = 232 + 242 + 252 + · · ·+ 392 + 402.

(b) g even, m = (g + 1)/2. The corresponding family contains terms in
arithmetic progression as in (14.46), with a = g+1, b = 2, and with transition term
4(n+ g)2r2. Family (14.46) takes the form

n−1∑
k=0

(2k + 1 + g)2 + (2n+ 2g)2r2 =
n−1∑
k=0

(2k + 1 + g + 2(n+ g))2, (14.53)

with r = 2N,n = 2N2. If N = 1, then r = n = 2, and (14.53) reduces to

1∑
k=0

(2k + 1 + g)2 + (4 + 2g)2 · 22 =
1∑

k=0

(2k + 1 + g + 2(2 + g))2.

The values g = 0, 2, 4 yield

12 + 32 + 42 · 22 = 52 + 72

32 + 52 + 82 · 22 = 112 + 132

52 + 72 + 122 · 22 = 172 + 192.

Families with n + g = r2/2. In this case, (14.45) implies m = (1 − g)/2. If
g is odd, m is an integer; if g is even, m = a/b, with a = 1 − g and b = 2. For
example, if g = 1, then m = 0, and the family in (14.47) has transition term n2r2,
where n is chosen so that 2(n+ 1) = r2. Family (14.47) becomes

n−1∑
k=0

k2 + n2r2 =
2n−1∑
k=n

(k + 1)2. (14.54)
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The values r = 4, 6, 8, with n = 7, 17, 31, yield:

12 + 22 + 32 + 42 + 52 + 62 + 72 · 42 = 82 + 92 + 102 + 112 + 122 + 132 + 142

12 + 22 + 32 + · · ·+ 152 + 162 + 172 · 62 = 182 + 192 + 202 + · · ·+ 322 + 332 + 342

12 + 22 + 32 + · · ·+ 292 + 302 + 312 · 82 = 322 + 332 + 342 + · · ·+ 602 + 612 + 622.

If g = 0, then m = 1/2 and (14.46) becomes

n−1∑
k=0

(2k + 1)2 + (2n)2r2 =
n−1∑
k=0

(2k + 1 + 2n)2,

with r2 = 2n. The values r = 2, 4, 6, with n = 2, 8, 18, yield

12 + 32 + 42 · 22 = 52 + 72

12 + 32 + 52 + · · ·+ 132 + 152 + 162 · 42 = 172 + 192 + 212 + · · ·+ 292 + 312

12 + 32 + 52 + · · ·+ 332 + 352 + 362 · 62 = 372 + 392 + 412 + · · ·+ 692 + 712.

Controlling the first term.

The parameter m represents the first term in basic identity (14.41), and it is im-
portant to note that families exist where it is specified in advance. We can always
choose m first and then determine g by the relations g = 2m − 1 if m > 0, or
g = 1 − 2m if m < 0. The foregoing requirements n = r2/2 for m > 0, and
n + g = r2/2 for m < 0, relate parameters r and n. The following examples arise
from the choices indicated.

The choice m = 7 gives g = 13. When r = n = 2, we get from (14.50) with
N = 1:

72 + 82 + 152 · 22 = 222 + 232,

and when r = 4, n = 8, we get from (14.50) with N = 2:

72 + 82 + 92 + · · ·+ 132 + 142 + 212 · 42 = 282 + 292 + 302 + · · ·+ 342 + 352.

The choice m = −2 gives g = 5, and we use (14.47). When r = 4 and n = 3, we
find

(−2)2 + (−1)2 + 02 + 32 · 42 = 62 + 72 + 82,

and when r = 6, n = 13, we obtain

(−2)2+(−1)2+02+12+ · · ·+92+102+132 ·62 = 162+172+182+ · · ·+272+282.
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Pythagorean triples.

When n = 1, (14.40) becomes a2 + (a + b)2r2 = (a + 2b)2, so (a, (a + b)r, a + 2b)
is a Pythagorean triple if a > 0. Euclid’s formulas x = (u2 − v2), y = 2uv, z =
(u2 + v2) for generating all Pythagorean triples correspond to (14.40) by taking
a = (u2 − v2), b = v2, and r = 2v/u, a rational multiplier. Because Euclid’s
formulas generate all Pythagorean triples, so does (14.40). If the multiplier r is not
an integer, the resulting Pythagorean identity will not be symmetric with respect
to the transition term. We turn now to asymmetric identities.

Asymmetric families.

The foregoing examples do not exhaust all possible families of identities. We have
treated those with a symmetry property relative to the transition term as required
by (14.44). There are many families that do not satisfy (14.44), which we call
asymmetric. For example

12 + 22 + 32 + 42 + 52 · 32 = 52 + 62 + 72 + 82 + 92

12 + 22 + 32 + · · ·+ 112 + 122 + 132 · 52 = 132 + 142 + 152 + · · ·+ 242 + 252

12 + 22 + 32 + · · ·+ 232 + 242 + 252 · 72 = 252 + 262 + 272 + · · ·+ 482 + 492

are members of the family

2N∑
k=1

k2 + (2N + 1)2M2 =

2N∑
k=0

(k + 2N + 1)2, (14.55)

in which 4N + 1 = M2. In the examples, N = 2, 6, 12, and M = 3, 5, 7.

Related examples are

12 + 22 + 32 + 42 + 42 · 32 = 52 + 62 + 72 + 82

12 + 22 + 32 + · · ·+ 112 + 122 + 122 · 52 = 132 + 142 + 152 + · · ·+ 242

12 + 22 + 32 + · · ·+ 232 + 242 + 242 · 72 = 252 + 262 + 272 + · · ·+ 472 + 482,

which are members of the family:

2N∑
k=1

k2 + 4N2M2 =
2N−1∑
k=0

(k + 2N + 1)2, (14.56)

in which 4N + 1 = M2. In the examples, N = 2, 6, 12, and M = 3, 5, 7.

Now we show that the asymmetric families can be obtained by returning to the
basic identity (14.41) in which the transition term is nd(2c + d), where c is given
by (14.42), and making simple choices of parameters m and d.
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Take n odd, say n = 2N + 1, choose m = 0, and d = n = 2N + 1. Then
c = (2N + 1)/2 and (14.41) becomes

2N∑
k=1

k2 + (2N + 1)2(4N + 1) =
2N∑
k=0

(k + 2N + 1)2,

which gives (14.55) by requiring that 4N + 1 be a square.

To obtain (14.56) from (14.55), transpose the last term on the right and observe
that

(2N + 1)2(4N + 1)− (4N + 1)2 = 4N2(4N + 1) = 4N2M2.

We note that the symmetric family (14.54) can also be deduced from (14.55) by
adding (4N + 2)2 and subtracting (2N + 1)2 on both sides of (14.55), to get

2N∑
k=0

k2 + (2N + 1)2(4N + 4) =

2N+1∑
k=1

(k + 2N + 1)2. (14.57)

Sums of squares with alternating signs.

The following identities, of a different type, are also of interest. They involve squares
of consecutive integers with alternating signs.

−52 + 42 = −32

22 − 32 + 42 = −52 + 62

−112 + 102 − 92 + 82 = −72 + 62 − 52

42 − 52 + 62 − 72 + 82 = −92 + 102 − 112 + 122

−172 + 162 − 152 + 142 − 132 + 122 = −112 + 102 − 92 + 82 − 72

62− 72 +82− 92 +102− 112 +122 = −132 +142− 152 +162− 172 +182.

The second, fourth, and sixth identities in this list are the special cases n = 2, 4,
and 6 of the following family, in which n is even:

n∑
k=0

(−1)k(k + n)2 =
n∑

k=1

(−1)k(k + 2n)2. (14.58)

The first, third, and fifth identities in the above list are the special members
n = 2, 4, and 6 of the following family, in which n is even:

n−1∑
k=0

(−1)k(k + 2n)2 =
n−1∑
k=1

(−1)k(k − 2n)2. (14.59)
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Both are special cases of a more general family valid for n even and arbitrary
m:

n−1∑
k=0

(−1)k(k +m)2 + (2n)2 = −
n−1∑
k=0

(−1)k(k + 1 + 3n−m)2. (14.60)

Note that this family has a symmetry property with respect to the transition term
(2n)2. To illustrate with numerical examples, in (14.60) take n = 4, and let m =
1, 2, and 1/3 to obtain:

12 − 22 + 32 − 42 + 82 = −122 + 132 − 142 + 152

22 − 32 + 42 − 52 + 82 = −112 + 122 − 132 + 142

12 − 42 + 72 − 102 + 242 = −382 + 412 − 442 + 472.

The choice m = 1/3 leads to sums with terms in arithmetic progression. This will
always happen when m is rational.

To prove (14.60), write the sum on the left as the sum of n/2 differences:

m2 − (m+ 1)2 + (m+ 2)2 − (m+ 3)2 + · · ·+ (m+ n− 2)2 − (m+ n− 1)2.

Now factor each difference of squares, and this becomes

−(2m+ 1)− (2m+ 5)− · · · − (2m+ 2n− 3) = −mn− (1 + 5 + · · ·+ 2n− 3),

because the number of terms is n/2.
A similar treatment of the sum on the right transforms it to

n

2
(6n− 2m) + (3 + 7 + · · ·+ 2n− 1) = 3n2 −mn+ (3 + 7 + · · ·+ 2n− 1).

Therefore, the difference of the sum on the right of (14.60) and that on the left is

3n2 + (1 + 3 + 5 + 7 + · · ·+ 2n− 1) = 4n2,

which proves (14.60).
We also have identities with a weight factor r2 in the transition term. For

example, for even n and arbitrary r we have the symmetric family

n−1∑
k=1

(−1)k(2r2n+ k)2 + (
2r2n

r
)2 =

n−1∑
k=1

(−1)k(2r2n− k)2. (14.61)

For examples of (14.61), take n = 4, and let r = 1, 2 and 3 to obtain

−112 + 102 − 92 + (
8

1
)2 = −72 + 62 − 52

−352 + 342 − 332 + (
32

2
)2 = −312 + 302 − 292

−752 + 742 − 732 + (
72

3
)2 = −712 + 702 − 692.
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To prove (14.61) we write it in the equivalent form

(2n)2r2 =
n−1∑
k=1

(−1)k−1[(k + 2r2n)2 − (k − 2r2n)2],

note that (k + 2r2n)2 − (k − 2r2n)2 = 8r2nk, and then invoke the formula

n−1∑
k=1

(−1)k−1k =
n

2
,

valid for even n.

A similar argument gives the following symmetric family of identities for even n
and arbitrary r, with a new parameter a = n(r2 − 1)/2:

n−1∑
k=1

(−1)k(k + a+ 2n)2 + (2n)2r2 =
n−1∑
k=1

(−1)k(2n− a− k)2. (14.62)

When r = 1, (14.62) becomes (14.59). The case n = 6 and r = 1 in (14.62) is
displayed above as the case n = 6 in (14.59).

In (14.62), take n = 6, and let r = 3 and 4 to obtain

−412+402−392+382−372+122 ·32 = −(−13)2+(−14)2−(−15)2+(−16)2−(−17)2

−622+612−602+592−582+122·42 = −(−34)2+(−35)2−(−36)2+(−37)2−(−38)2.
In these two examples the symmetry is displayed by the fact that 12 is midway

between 37 and (−13) in the first case, and midway between 58 and (−34) in the
second case.

The foregoing families illustrate that a rich variety of identities can be easily
obtained. For related work, see L. E. Dickson [37; pp. 318-323].

NOTES ON CHAPTER 14

Most of the material in Sections 14.1 through 14.6 appeared in [11]. The iden-
tities in Section 14.7 appear in [27].
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These problems can be easily solved by the methods developed in this chapter. The reader

may wish to try solving them before reading the chapter.

1. The left part of the next figure shows a mid-section of a sphere with a
concentric spherical cavity. The cavity is surrounded by two concentric spherical
shells of arbitrary thicknesses, each having its own uniform density. Imagine the
inner shell made of silver and the outer shell of gold. The sphere is sliced by parallel
cuts into disks having the same width, two of which are shown on the right.

Prove that each punctured disk contains the same mass of gold and the same
mass of silver, hence the same total mass of metal.

2. A tractrix is the curve traced by a toy being pulled on a taut string by a
child walking along a fixed straight line, as shown below.

toy 

child

tractrix (pat h of toy) 

path of child

string
string

(a) Explain why the diagram provides a proof without words that the area of the
region under the tractrix is equal to that of a quarter of a circular disk whose radius
is the length of the string.

(b) Find the area of the region under a curve traced by a knot in the middle of
the string.

473
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51
This appendix describes alternative approaches of some topics treated in

earlier chapters, and points the way to further applications. For example, it

relates the exponential curve and the tractrix, it introduces a geometric ap-

proach to tomography, and it discusses isoperimetric properties of circumgons.

It also contains a proof of Mamikon’s Theorem based on differential geometry.

15.1 ALTERNATIVE TREATMENT OF PARABOLIC SEGMENT

Figure 15.1 shows the parabola y = x2, together with another parabola, y =(2x)2,
exactly half as wide as the first. Both are enclosed in a rectangle of base x and
altitude x2 whose area is x3. The two parabolas divide the rectangle into three
regions, and our strategy is to show that all three have equal areas. Then each has
area one-third that of the circumscribing rectangle, as required.

(2x)2 x2

Figure 15.1: Parabola y =(2x)2 formed by bisecting the horizontal segments of y = x2.
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The two leftmost regions formed by the bisecting parabola obviously have equal
areas, so to complete the proof we need only show that the region above the bisecting
parabola has the same area as the parabolic segment below the original parabola.
To do this, look at Figure 15.2. The four right triangles in this figure have equal
areas (they have the same altitude and equal bases). Therefore the problem reduces
to showing that the two shaded regions have equal areas.

The shaded portion under the parabola y = x2 is the tangent sweep obtained
by drawing all the tangent lines to the parabola and cutting them off at the x axis.
Next we show that the other shaded portion is its tangent cluster, with each tangent
segment translated so that its point of intersection with the x axis is brought to a
common point, the origin.

Figure 15.2: A tangent sweep and and its tangent cluster.

To see this, note that at a typical point (t, t2) on the lower parabola, the tangent
intersects the x axis at t/2. Therefore, if the tangent segment from (t/2, 0) to (t, t2)
is translated left by t/2, the translated segment joins the origin and the point
(t/2, t2) on the curve y = (2x)2. So the tangent cluster of the tangent sweep is
the shaded region above the curve y = (2x)2, and by Mamikon’s Theorem the two
shaded regions have equal areas, as required. This completes the alternative proof
that the area of a parabolic segment below the parabola is exactly one-third that
of its circumscribing rectangle.

15.2 ALTERNATIVE TREATMENT FOR HIGHER POWERS

The argument used for a parabolic segment extends to generalized parabolic seg-
ments, in which x2 is replaced by higher powers. Figure 15.3a shows the graphs of
y = x3 and y =(3x)3, which divide the rectangle of area x4 into three regions. The
curve y =(3x)3 trisects each horizontal segment in the figure, hence the area of the
region above the cubic is half that of the region between the two cubic curves, as
shown in the diagram.

Now we show that the area above the trisecting cubic is equal to the area below
the other one, so each area is one-fourth that of the circumscribing rectangle.

To do this refer to Figure 15.3b, which shows the same two regions with a right
triangle cut off each. Here we use the fact that the subtangent to the cubic is
one-third the length of the base. So the two right triangles are congruent and have
equal areas, and now we have to show that the two shaded regions have equal areas.
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(3x)3 x 3

x/3 2x/3

(3x)3 x 3

(a) (b)

Figure 15.3: (a) Cubic curve y = (3x)3. (b) The tangent sweep and the tangent cluster
have equal areas.

One shaded region is the tangent sweep and the other is its tangent cluster, so they
have equal areas. Since each of them has area half that of the region between the
two cubics, the area of the cubic segment below the curve y = x3 is one-fourth that
of the rectangle, or x4/4.

The argument extends to higher integer powers, a property not shared by the
Archimedes treatment of the parabolic segment. For the curve y = xn we use the
fact that the subtangent at x has length x/n and argue in a similar manner.

15.3 CALCULUS TREATMENT OF THE TRACTRIX

Mamikon’s method of treating the tractrix problem is much simpler than the clas-
sical calculus treatment presented in this section.

Figure 15.4 shows a point (x, y) on a tractrix generated as the locus of a point
moving in such a way that the tangent segment from (x, y) to the x axis has con-
stant length k. The slope y′ of the tangent line is − tan θ, where θ is the angle of
inclination of the tangent segment with the x axis shown in Figure 15.4. The right

k 
θ

( x,y ) 

(0 ,k ) 

Figure 15.4: Determining the cartesian equation for the tractrix.

triangle with base angle θ and hypotenuse k has altitude y and base
√
k2 − y2.
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Therefore tan θ = y/
√
k2 − y2, hence y satisfies the differential equation

y′ = − y√
k2 − y2

.

Writing y′ = dy/dx, we can express this as a differential equation for x in terms
of y :

dx

dy
= −

√
k2 − y2

y
.

Integrating this with the help of the substitution y = k cos t, and using the fact that
x = 0 when y = k, we find

x(y) = k log
k +

√
k2 − y2

y
−
√

k2 − y2. (15.1)

This cartesian equation is satisfied by any point (x, y) on the tractrix, with x = x(y).
An alternative derivation of (15.1) is given in Chapter 11, Section 11.4.

The area of the region between the tractrix and the x axis is the integral∫ k

0
x(y) dy, obtained by integrating the function in (15.1) with respect to y, from

y = 0 to y = k. The indefinite integral of x(y) can be determined by standard
integration techniques. The result, which can be verified by differentiation, states
that ∫

(k log
k +

√
k2 − y2

y
−
√

k2 − y2 ) dy = A(y),

where

A(y) = ky log
k +

√
k2 − y2

y
− 1

2
y
√

k2 − y2 +
1

2
k2 arcsin

y

k
. (15.2)

Now A(0) = 0, and A(k) =
∫ k

0
x(y)dy. Using (15.2) to calculate A(k), we find

that only the arcsine term survives and we get A(k) = πk2/4. This is the area of a
quarter of a circular disk of radius k, as predicted by Mamikon’s Theorem.

15.4 GEOMETRIC DERIVATION OF THE INDEFINITE INTEGRAL

This section uses Figure 15.5 to derive (15.2) geometrically. In Figure 15.5a, the
shaded region between the tractrix and the interval [0, x], consists of two parts, a

rectangle of area yx(y) and a curved region above it of area
∫ k

y
x(t) dt. Let T denote

the area of the adjacent right triangle with altitude y and hypotenuse of length k,
tangent to the tractrix. As the tangent segment of length k moves along the tractrix
from (0, k) to (x, y) its tangent sweep, which consists of the shaded region together

with the triangle, has area
∫ k

y
x(t) dt + yx(y) + T . By Mamikon’s theorem this is

equal to the area of the corresponding tangent cluster, a circular sector of radius k
subtending angle θ shown in Figure 15.5b.
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The cluster has area 1
2k

2θ. Therefore

∫ k

y

x(t) dt+ yx(y) + T =
1

2
k2θ,

which we can write as

∫ k

y

x(t) dt+ yx(y) =
1

2
k2θ − T. (15.3)

The geometric meaning of (15.3) is revealed in Figure 15.5. The left side is the
area of the darker shaded region in Figure 15.5a, which is the ordinate set of the
tractrix over the interval [0, x]. The right side represents the area of the darker
shaded region in Figure 15.5b: the area of the circular sector of radius k subtending
angle θ, minus the area T of the right triangle.

θ
k 

θ k 

(a) (b) 

Figure 15.5: Geometric interpretation of (15.3).

We use this to derive the formula for A(y) in (15.2). Write

A(y) =

∫ y

0

x(t) dt = (

∫ k

0

+

∫ y

k

)x(t) dt = A(k)−
∫ k

y

x(t) dt.

We know that A(k) = πk2/4, and using (15.3) we find

A(y) =
πk2

4
− 1

2
k2θ + T + yx(y). (15.4)

To verify that this is the same as (15.2), we express θ and T in terms of k and
y. Figure 15.5a gives us cos θ = y/k, or

θ = arccos
y

k
=

π

2
− arcsin

y

k
,

hence

−1

2
k2θ = −πk2

4
+

1

2
k2 arcsin

y

k
.

For the triangular area T , we have

T =
1

2
yk sin θ =

1

2
y
√
k2 − y2.

ApostolGeoChapter 15.indd   7ApostolGeoChapter 15.indd   7 9/24/12   9:41 AM9/24/12   9:41 AM



480 Chapter 15. APPENDIX

Using these relations in (15.4) we find

A(y) =
1

2
k2 arcsin

y

k
+

1

2
y
√
k2 − y2 + yx(y).

This has been obtained geometrically without integration or differentiation, and it
is equivalent to (15.2), in view of (15.1).

15.5 SURPRISING RELATION BETWEEN EXPONENTIAL CURVES
AND THE TRACTRIX

All subtangents from an exponential curve to the x axis have constant length,
whereas all tangent segments from a tractrix to the x axis have constant length.
This section shows that both curves are members of the same family in which a
linear combination of the tangent and subtangent is constant.

Figure 15.6 shows an arbitrary curve together with a fixed base line, shown here
as the x axis. At a point P of this curve a tangent segment of length t cuts off
a subtangent of length s along the base line. As before, we can form the tangent
cluster by translating each tangent segment of length t parallel to itself so the point
of tangency is brought to a common point O, as in Figure 15.6 (right). Let C denote
the other endpoint of the tangent.

subtangent of length s

tangent of length t

P
t

sC

O

Figure 15.6: Tangent and subtangent of a general curve translated by the same amount.

As P moves along the curve, C traces the curve defining the tangent cluster.
We can also translate the subtangent of length s. The subtangents will be parallel
to the given base line. One endpoint of the translated subtangent is at C. When
P moves along a tractrix, t is constant and C moves along a circle. When P moves
along an exponential, s is constant and C moves along a vertical line.

Now suppose the original curve has the property that some linear combination
of t and s has a constant value γ, say

μt+ νs = γ
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for some choice of nonnegative μ and ν, not both zero.

What is the path of C?

When ν = 0, tangent t is constant and C lies on a circle. When μ = 0, subtan-
gent s is constant and C lies on a straight line. Now we show that, for general μ
and ν, C always lies on a conic section. Let’s see why.

If μ �= 0, divide by μ and rewrite the last equation as

t = e(d− s),

where e = ν/μ, and d is another constant. To show that C lies on a conic, refer to
Figure 15.7. Use point O as a focus and take as directrix a line perpendicular to

directrix

d − s

t

focus

d

s

C

O

Figure 15.7: If μt+ νs is constant, C lies on a conic with eccentricity ν/μ.

the subtangents at a distance d from the focus and lying to the left of the vertical
line through O. The quantity (d − s) is the distance from the directrix to C, and
t is the distance from the focus to C. The equation t = e(d − s) states that the
distance of C from the focus is e times its distance from the directrix, so C lies on
a conic section with eccentricity e. The conic is an ellipse, parabola, or hyperbola
according as 0 < e < 1, e = 1, or e > 1. The limiting cases e = 0 (i.e., ν = 0) and
∞ (i.e., μ = 0) give a circle and vertical straight line, respectively.

An intermediate case occurs when the original point P lies on a pursuit curve
in which a fox running on a line is pursued by a dog (not on the line) having the
same speed as the fox. In this case it is easily shown that t+ s is constant, so e = 1
and the tangent cluster is a parabolic sector swept out by focal radii.

Thus, we have learned something interesting. The tractrix, the exponential, and
the classical dog-fox-pursuit curve, which have been studied for hundreds of years,
turn out to be special cases of a family of curves characterized by the equation
μt+ νs = constant.

Cartesian equations for members of this family can be derived with the help of
differential equations. However, they are not needed to determine the area of the
tangent sweep of members of the family. By Mamikon’s Theorem, the area of each
tangent sweep is equal to that of the corresponding tangent cluster, which, in turn,
is a sector of a conic section swept out by focal radii.
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15.6 MORE GENERAL BICYCLE TRACKS

When bicycle tracks form a region like that in Figure 1.15, its area is that of a
circular sector whose radius is the distance between the wheels of the bicycle, and
whose central angle is the change in angle from the initial position to the final
position.

Figure 15.8a shows a more general situation where the two tracks intersect to
form several regions, labeled + and − to indicate that the rear wheel has crossed
the path of the front wheel. The tangent sweep consists of the regions between
the tracks, together with portions outside the tracks (labeled ± as in Figure 15.8b)
swept twice, once in the positive (counterclockwise) direction, and again in the
negative (clockwise) direction. The central angle of the tangent cluster gets positive
contributions from regions marked +, and negative contributions from those marked
− (Figure 15.8c). Contributions from common portions (marked ±) cancel, and
again the change in angle depends only on the initial and final positions. Thus, the
method of sweeping tangents gives the sum of the areas of regions marked +, minus
the sum of the areas of regions marked − (Figure 15.8a).

− −

+ +
− −

+ + −+

+
+ =

−−

(a)

(b)

(c)

+

+ −

+ +

Figure 15.8: Intersecting tracks of bicycle wheels.
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15.7 VARIATIONS ON THE TRACTRIX

Return to the tractrix in Figure 1.18, the trajectory of a toy on a taut string being
pulled by a child walking along the x axis. Imagine a knot on the string and ask
for its trajectory. If the knot is at the toy, the trajectory is the tractrix, and if it is
at the child’s hand, it is the linear path of the child.

(a) (b)

A
A

B B

C

C

D D

1

1

2

2
3

3

0

0

Figure 15.9: Trajectory of a knot on a tangent to a tractrix (a), and the corresponding
tangent cluster (b). Regions labeled with the same letter in (a) and (b) have equal areas.

Other possible trajectories are shown in Figure 15.9a, including a case in which
the knot is on an extended string below the x axis. In Figure 15.9a, point 0 is on the
tractrix, point 2 is on the x axis, point 1 is between 0 and 2, and point 3 is collinear
with 0, 1, 2, but below the x axis. A cartesian equation for each trajectory can
be obtained from that of the tractrix. Areas of regions between trajectories can be
determined without knowing the equations by consulting the corresponding tangent
clusters in Figure 15.9b. For example, the area of the shaded region between the x
axis and the trajectory through point 3 in Figure 15.9a is equal to the difference in
areas of the corresponding sectors in Figure 15.9b.

The knot can also be placed beyond the toy as indicated in Figure 15.10. Its
trajectory starts on the y axis, makes an arc to the left of the y axis, then returns
to a lower point on the y axis and continues to the right as indicated.

Figure 15.10: Knot beyond the toy and its trajectory.
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Figure 15.11: Symmetric tractrix and knot trajectories.

If the child is allowed to move along the negative x axis as well, the tractrix and
the trajectories of the knots are symmetric about the y axis, as shown in Figure
15.11. When the knot is beyond the toy, the trajectory has a loop. The tractrix
itself has a cusp on the y axis as indicated in Figure 15.11.

15.8 GEOMETRICAL APPROACH TO TOMOGRAPHY

Tomography reconstructs higher-dimensional density distribution of a solid body,
such as a brain, from lower-dimensional projections, obtained by body-penetrating
radiation such as X-rays. Modern tomography methodology relies on the numerical
solution of millions of equations with millions of unknowns arising from complex
mathematical analysis. By contrast, this section introduces a possible geometrical
approach to tomography.

Spherical shells.

We begin with the simple case of spherically symmetric distributions. A spherical
shell is the region between two concentric solid spheres. Its cross section by a plane
that intersects the inner and outer spheres is an annular ring whose inner and outer
radii depend on the cutting plane. In Section 1.3 we proved:

The area of an annular ring cut by a plane that intersects both spheres of a
spherical shell is a constant independent of the position and inclination of the cutting
plane.

This, in turn, was used in Chapter 5 to prove Theorem 5.4, which is restated
here, and illustrated in Figure 15.12.

Theorem 5.4. A slice of a spherical shell between two horizontal planes that
cut both spheres has volume equal to the corresponding slice of a cylindrical shell
cut by the same planes.

Thus, for given radii, the volume of a slice of a spherical shell between two
parallel planes that cut both spheres is proportional to the distance between the
parallel cutting planes.
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r

r

(a) (b)

h

RR

Figure 15.12: A slice of a spherical shell between two horizontal planes that cut
both spheres has the same volume as the cylindrical shell cut by the planes.

Spherical distribution with uniform density.

Next, consider a uniform solid sphere whose density (mass per unit volume) is
constant. We construct a corresponding projected mass density as follows. Slice
the sphere by a finite number of equally spaced vertical parallel planes, as suggested
by the vertical lines in Figure 15.13a, and draw a horizontal axis perpendicular to
the cutting planes. We call this a projection axis, with its origin 0 on the vertical
plane through the center of the sphere, and unit of length equal to the spacing
between the cutting planes.

parabola

x x(a) (b)

Figure 15.13: (a) Equally spaced slices of a uniform sphere. The histogram shows
the projected mass density (mass/unit interval). (b) Uniform sphere with a cavity.

Form a histogram by constructing a step function whose height above each
subinterval of unit length is the mass of the slice. Thus, the area of each rectangle
represents the mass of the slice above its base. The histogram is symmetric because
of spherical symmetry.
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The cavity principle.

Start with a uniform spherical shell with outer radius r and a concentric spherical
cavity of radius a, illustrated in Figure 15.13b. By Theorem 5.4, those slices in
Figure 15.13b piercing the cavity have equal volume and equal mass (because the
density is constant). Consequently, the portion of the histogram due to the cavity
is constant, which means that the projected mass density is constant on the interval
[−a, a]. We refer to this property as the uniform cavity principle:

For a given uniform spherical shell, the projected mass density due to the cavity
is constant.

A simple but important consequence is illustrated in Figure 15.13b. The graph
in Figure 15.13a represents the projected mass density of a uniform sphere of radius
r with no cavity. Figure 15.13b shows the corresponding graph after a sphere of
radius a is removed to create a cavity. The graph is constant over [−a, a], and has
the same shape as that in Figure 15.13a outside this interval. Therefore, the area of
the region in Figure 15.13b above the horizontal line and below the graph of the full
histogram is equal to the mass inside the sphere of radius a in Figure 15.13a from
which the cavity was created. The uniform cavity principle and its consequence
as described in Figure 15.13b can be extended to a spherically symmetric mass
distribution, uniform or nonuniform, as follows.

General cavity principle. For a sphere with spherically symmetric mass dis-
tribution and corresponding projected mass density histogram we have:
(a) The contribution to the histogram due to a cavity of radius a is a constant de-
pending on this radius.
(b) The mass inside a concentric sphere of radius a is equal to the area of the portion
of the full histogram above the constant value in (a).

To establish this principle for any spherically symmetric distribution, we start
with a sphere of radius a and regard it as a fixed cavity, around which we build a
spherical shell by adjoining successive uniform concentric layers of different densi-
ties, like layers of an onion. In Figure 15.14a the radius of the outer sphere is very
nearly the same as the radius a of the cavity, and we can think of this as a shell
surrounding the cavity with a thin layer of uniform material. The corresponding
histogram is shown as trapezoidal over the interval [−a, a].

In Figure 15.14b, a second layer of uniform material has been added to the outer
sphere in Figure 15.14a. The density in the new layer is also constant, but it need not
be the same as that in the first layer. Again, the resulting histogram is horizontal
above [−a, a], but its constant height is greater by the constant amount of mass
above coming from the second layer. Outside the interval [−a, a], the histogram is
correspondingly changed, but symmetry is preserved because the new distribution
resulting from the two new layers is spherically symmetric.

In Figure 15.14c a third layer of uniform material has been added to the outer
sphere in Figure 15.14b, and again the constant height of the histogram over the
interval [−a, a] is greater by the constant amount of mass coming from the third
layer. As we continue this process, the resulting shells always have spherical sym-
metry, and the histogram above [−a, a] is shown as a horizontal trapezoid at each
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(a) (b) (c)

Figure 15.14: Spherically symmetric shells constructed with concentric uniform
layers of different densities around a fixed cavity, together with their projected
mass density trapezoidal histograms.

stage. Note that the area of each trapezoidal horizontal layer of the histogram above
[−a, a] is equal to the mass of the corresponding concentric layer projected onto the
same interval. This process describes one way of building a spherically symmetric
shell of nonuniform density around a cavity.

On the other hand, an arbitrary sphere having spherically symmetric nonuniform
mass density can be visualized as being made up of layers of thin concentric uniform
shells, each with its own constant density. The corresponding projected mass density
histogram is shown in Figure 15.15a as a symmetric smooth curve; the area of its
ordinate set represents the total mass in the solid sphere.

Now take a sphere, and remove a smaller concentric sphere to form a cavity
of radius a, say. The corresponding projected mass density is constant over the
interval [−a, a], as shown by the example in Figure 15.15b, and otherwise has the
same shape as the projected mass density in Figure 15.15a. Therefore, the area of

(a) (b) (c)

Figure 15.15: (a) Projected mass density of a spherically symmetric distribution.
(b) The mass inside a sphere of radius a is equal to the area of the unshaded portion
above [−a, a]. (c) Illustrating Theorem 15.1.
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the portion cut off by this constant height, shown unshaded region in Figure 15.15b,
is equal to the mass that was inside the sphere of radius a in Figure 15.15a before
the cavity was created. This proves the general cavity principle stated above. As
a consequence of this principle we can find the mass between any two spheres, as
illustrated in Figure 15.15c.

Theorem 15.1. The mass contained in a spherical shell is equal to the area of
the corresponding horizontal slice of the one-dimensional density distribution.

Let Φ(r) denote the three-dimensional mass density at distance r from the center
of the shell, and let f(x) denote the corresponding one-dimensional projected mass
density function. Theorem 15.1 leads to a relation between the density function Φ
and the derivative of f :

Φ(r) =
|f ′(r)|
2πr

. (15.5)

To verify (15.5), note that a thin shell of radius r and thickness Δr has mass ΔM
very nearly equal to 4πr2Φ(r)Δr. According to Theorem 15.1, ΔM is also equal to
the area of the corresponding horizontal slice of the one-dimensional distribution,
which is 2r|Δf |, where |Δf | is the altitude of the slice of base 2r. Equate the two
expressions for ΔM and let Δr → 0 to obtain (15.5).

Figure 15.16 shows examples of f on [−a, a], with f(x) = 0 if |x| > a. Figure
15.17 shows the general shape of the corresponding density Φ over the interval [0, a].
In Figure 15.17a, f ′(a) does not exist but the density Φ can be thought of as a Dirac
delta function that is infinite at a and 0 elsewhere.

x

f(x)

(b) parabola

(c) triangle (d) cosine

(a) constant a a

a a

-a -a

-a -a (e) normal distribution

Figure 15.16: Examples of one-dimensional density distributions f .

(e) normal distribution  (sin r)/r1/r(b) constant (c)(a) delta function

Φ(r)

(d)
0 a 0 a 0 a 0 a 0

r

Figure 15.17: Corresponding three-dimensional density distribution Φ.
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The foregoing geometric method can be further extended from spherically sym-
metric distributions to arbitrary asymmetric distributions. One can reconstruct an
arbitrary three-dimensional mass density distribution from a knowledge of its one-
dimensional projections in all possible directions, and thereby solve geometrically
the central problem of classical tomography. However, this topic is beyond the scope
of this book, and is not discussed here.

It is worth mentioning that the method for spherically symmetric distributions
has already been applied to astrophysics. In [57] it was used to discover that the
famous star cluster Pleiades contains a central cavity with respect to so-called flare
stars, which sheds light on the evolution of young stars in stellar aggregates.

15.9 OPTIMAL CIRCUMGONS

Isoperimetric problems.

In the plane, traditional isoperimetric problems compare different plane regions
having equal perimeters and ask for the region of maximal area. The analogy in 3-
space is to compare different solids having equal surface area and ask for the solid of
maximal volume. It is known that among all plane regions with a given perimeter,
the circle encloses the largest area. This follows from the isoperimetric inequality
P 2 ≥ 4πA, which relates the area A and perimeter P of a planar region bounded
by a simple closed curve. Equality holds only for the circle.

A well known theorem [61; Theorem 12.5a] states:

A polygon inscribed in a circle has larger area than any other polygon with sides
of the same lengths (therefore of the same perimeter) in the same order.

The following is a dual to this statement that to our knowledge has never been
previously formulated:

Theorem 15.2. A polygon circumscribing a circle has a larger area than any
other polygon with the same perimeter and the same interior angles in a given order.

This section outlines a method of proof that also reveals interesting isoperimetric
properties of polygonal circumgons along the way. Our principal tool is the concept
of contour ratio, introduced in Chapter 10, a number associated with a plane region
having perimeter P and area A. It is defined as the quotient

κ =
P 2

4A
, (15.6)

and has the pleasant feature that κ = π for a circle and κ = 4 for a square. The
isoperimetric inequality states that κ ≥ π for any plane region bounded by a simple
closed curve. It also implies that among all regions with a given area, the circle has
the smallest perimeter.

The ratio π/κ is called the isoperimetric quotient, terminology that Niven [61;
p. 90] attributes to Pólya.

Similar contours have the same contour ratio because the scaling factor cancels
in (15.6). For contours with given perimeter, those with larger areas have smaller
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contour ratios. And for contours with given area, those with smaller perimeters
have smaller contour ratios.

A detailed study of contour ratios is given in Chapter 10. Here we use only the
simple fact that for a circumgon with inradius r and contour ratio κ, we have

P = 2κr and A = κr2. (15.7)

These equations follow at once from (15.6) because A = Pr/2 for a circumgon.
They generalize the classical formulas P = 2πr and A = πr2 for a circular disk.
Thus, the contour ratio κ plays the same role for a circumgon that π plays for a
circle; it is the ratio of the perimeter to the diameter of the incircle. For a given
inradius, both P and A are proportional to κ, so they increase or decrease with κ.

Some isoperimetric problems deal with specific contours, such as polygons. An
n-gon has n edges and n interior angles. For a given n we can vary the lengths of
the edges or the measures of the angles and try to minimize the contour ratio. A
classical result, attributed to Zenodorus [46; p. 207, (3)], states that among all n-
gons of given perimeter, the regular polygon is greatest in area. Thus, for a triangle
of given perimeter, the equilateral triangle has maximal area, and for a quadrilateral
with given perimeter the square has maximal area. It is also well known that among
triangles with one given angle the isosceles triangle has the smallest contour ratio.

We can vary a triangle and preserve its angles by moving each side parallel to
itself. This produces a similar triangle that necessarily has the same contour ratio.
In other words, if the angles of a triangle are fixed, and each side is moved parallel to
itself, the contour ratio remains constant. Motivated by the example of a triangle,
which is a circumgon, we ask: What happens to the contour ratio if each side of a
general circumgon is moved parallel to itself?

First we prove a simple but powerful auxiliary result relating the contour ratio
of a circumgon with that of an arbitrary contour. Start with a circumgon with
perimeter P , area A, and contour ratio κ = P 2/(4A). Now take a contour with
perimeter P ′ and area A′, and compare its contour ratio

κ′ =
(P ′)2

4A′

with that of the circumgon. There are three possibilities: κ′ > κ, κ′ = κ, and
κ′ < κ. The following lemma expresses each in an equivalent form that involves the
quantititesP, A, P ′, A′ and the inradius r of the circumgon.

Comparison Lemma. Let κ denote the contour ratio of a circumgon with
perimeter P , area A, and inradius r, and let κ′ denote the contour ratio of a contour
with perimeter P ′ and area A′. Let ⊗ denote one of the three order relations >, =,
or <. Then the relation

κ′ ⊗ κ (15.8)

is equivalent to the following relation involving the differences P ′ − P and A′ −A :

r2(P ′ − P )2 + 4Ar(P ′ − P )⊗ 4A(A′ −A). (15.9)
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Proof. First, (15.8) can be written as (P ′)2 ⊗ 4κA′,which is equivalent to

(P ′)2 − 4κA⊗ 4κ(A′ −A). (15.10)

Using (15.7) we have

(P ′)2 = (P ′ − P + 2κr)2 = (P ′ − P )2 + 4κr(P ′ − P ) + 4κA,

or

(P ′)2 − 4κA = (P ′ − P )2 + 4κr(P ′ − P ).

Use this in the left-hand side of (15.10), then multiply both sides by r2, and again
use κr2 = A to get (15.9).

The Comparison Lemma is particularly adaptable for studying the behavior of
the contour ratio when each edge of a circumgon is moved parallel to itself.

We introduce some convenient terminology. Recall that a polygonal circumgon
is the union of a finite number of triangular building blocks, with each outer edge
lying on a line tangent to the incircle. In what follows we assume the polygon is
closed, which means that consecutive outer edges intersect, like those in Figures
4.1 and 4.2. The example in Figure 4.4 is not closed. We say that two consecutive
outer edges form a convex corner if the interior angle of intersection is less than a
straight angle, and a nonconvex corner if the angle of intersection is greater than a
straight angle. In Figure 4.1, all corners are convex. In Figure 4.2a, four corners
are convex and two are nonconvex, and in Figure 4.2b there are five convex corners
and five nonconvex corners.

Our strategy involves starting with a given (closed) polygonal circumgon and
forming a new closed polygon, which we call a parallel polygon, whose edges are
along the same tangent lines or parallel to those of the given circumgon. This
parallel polygon is constructed as follows: Imagine the line through an outer edge
of the circumgon translated (parallel to itself). The two tangent lines through the
outer edges adjacent to this segment are kept fixed. They intersect the translated
line in a segment parallel to the outer edge. The new polygon, formed by replacing
the outer edge of the circumgon by the translated segment, will have all its edges
parallel to those of the circumgon. The length of the translated segment will depend
on the angle of inclination of the two adjacent tangent lines and on the distance
translated.

Now we can prove the following result for convex polygonal circumgons:

Theorem 15.3. If one edge of a convex polygonal circumgon with contour ratio
κ is translated to form a parallel polygon with contour ratio κ′, then κ′ ≥ κ, with
equality if and only if the circumgon is a triangle.

Proof. As noted earlier, equality holds for triangles because parallel triangles are
similar, hence have the same contour ratio. Therefore we consider convex polygonal
circumgons with four or more sides. We form a parallel polygon by moving just one
side of the circumgon parallel to itself, and show that we obtain strict inequality
κ′ > κ.
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First we dispose of the simplest case, when the two edges adjacent to the moving
edge are parallel to each other. Then the moving edge has constant length a > 2r,
where r is the inradius. If the edge moves a distance w, the area A′ and perimeter
P ′ of the parallel polygon are given by

A′ = A± aw, P ′ = P ± a

r
w,

with the plus or minus sign depending on the direction of translation. When these
are used in (15.9) the Comparison Lemma tells us that κ′ ⊗ κ is equivalent to
a2w2 ⊗ 0. Therefore the symbol ⊗ must be >, hence κ′ > κ, which means that the
contour ratio increases, regardless of the direction of translation.

If the two edges adjacent to the moving edge intersect, we consider two cases,
depending on whether the length of the moving edge (a) decreases or (b) increases
as it moves away from the incenter as suggested by edge MN in Figure 15.18.

Case (a). Start with an edge of the circumgon between two (convex) corners
as shown in Figure 15.18, let a denote its length, and let a′ denote the length of the
translated parallel edge, which depends on w, the perpendicular distance between
the parallel edges. In this case a′ decreases as the new edge moves away from
the incenter (and increases as it moves towards the incenter). If the new edge is
outside the circumgon, as shown in Figure 15.18, w is restricted by the inequalities
0 ≤ w ≤ H, where H is the altitude of the triangle with base a and opposite vertex
at the point of intersection of the extended tangent lines adjacent to the edge of
length a. In this case the parallel polygon has area

A′ = A+
a+ a′

2
w, (15.11)

where (a+a′)w/2 is the area of the trapezoid formed by the parallel edges of lengths
a and a′. To determine how a′ depends on w, use similar triangles to get

a′

a
=

H − w

H
= 1− w

H
,

so a′ = a− wa/H, a′ + a = 2a− wa/H, and (15.11) gives us

A′ −A = aw − a

2H
w2. (15.12)

Next, we show that the new perimeter P ′ is related to P by

P ′ − P =
a

r
w, (15.13)

where r is the inradius. To see this, note that P ′ = P ′(w) is a linear function of
w that has the value P when w = 0 so P ′(w) − P = cw for some constant c. To
determine c, take w = H to get P ′(H)− P = cH. But when w = H we have

P ′(H)− P = e+ f − a,

where e and f are the lengths (Figure 15.18) of the other two edges of the triangle
with base a, altitude H, and area T = aH/2. The area T is also the sum of the
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M

N

r

r
w

H - w

ea
a’

f

Figure 15.18: One edge between two-convex corners translated parallel to itself
through a distance w to form a parallel polygon.

areas er/2+ fr/2 of the two triangles with one vertex at the incenter and opposite
edges of lengths e and f , minus the area ar/2 of the overlapping triangle with one
vertex at the incenter and opposite edge of length a. In other words, we have

aH/2 = (e+ f − a)r/2 = cHr/2,

hence c = a/r and we get (15.13).
If the parallel edge, of length a′, is inside the circumgon, the same type of

analysis gives

A′ −A = −aw − a

2H
w2, P ′ − P = −a

r
w. (15.14)

These are like (15.12) and (15.13) except for the sign change in the linear w term.
Using them in the Comparison Lemma we find that κ′ ⊗ κ is equivalent to

r2(±a

r
w)2 + 4Ar(±a

r
w)⊗ 4A(±aw − a

2H
w2),

where the plus sign is used if the translated edge of length a′ is outside the circum-
gon, and the minus sign if it is inside. In either case, the linear terms in w cancel
and the last relation simplifies to a2 ⊗− 2 aA

H , or aH/2⊗−A, which becomes

T ⊗−A, (15.15)

where T = aH/2 is the area of the triangle with base a and altitude H. Both T and
A are positive, hence (15.15) is satisfied only when ⊗ is the symbol >, which means

ApostolGeoChapter 15.indd   21ApostolGeoChapter 15.indd   21 9/24/12   9:42 AM9/24/12   9:42 AM



494 Chapter 15. APPENDIX

κ′ > κ. In other words, moving the new edge outward or inward will increase the
contour ratio.

Case (b). Next, we move the edge labeled MN in Figure 15.18 parallel to itself
and apply the same analysis. In this case, a′ increases as the new edge moves away
from the incenter (and decreases as it moves towards the incenter). Then, instead
of (15.15), we find T ⊗ A, where T is the area of the large triangle with base MN
and altitude H perpendicular to MN . But in this case the large triangle contains
the entire circumgon of area A, so T > A, and again we find κ′ > κ.

In both cases (a) and (b) we used the Comparison Lemma to transform the
relation κ′ ⊗ κ between contour ratios to an equivalent relation T ⊗ ±A between
the area T of a triangle and the area A of the circumgon. The same method can
be applied to a more general situation in which the edges of a convex polygonal
circumgon undergo parallel translation independently through respective distances
w1, . . . , wn. The details are more complicated, but the essential ideas and final
conclusion are the same as above: the contour ratio decreases. Consequently, we
have

Theorem 15.4. A convex polygonal circumgon has the minimal contour ratio
among all parallel polygons obtained by moving independently one or more edges of
the circumgon.

If we move more than one edge of a polygonal circumgon, the resulting parallel
polygon could become a similar scaled version of the original circumgon, in which
case it has the same contour ratio, and its incircle is correspondingly scaled.

Nonconvex circumgons.

Theorem 15.4 does not apply to a nonconvex polygonal circumgon as we can easily
verify by an example. Figure 15.19 shows a circumgon where two adjacent outer
edges meet at an interior angle greater than a straight angle to form a nonconvex
corner. As in the foregoing proof, we translate the line through the edge of length a
parallel to itself through a distance w to produce a parallel polygon with a parallel
edge of length a′. The new edge can be outside the circumgon, in which case a′ > a,
as in Figure 15.19, or inside the circumgon, in which case a′ < a.

If A and P denote the area and perimeter of the circumgon, an argument similar
to that given in Case (a) of Theorem 15.3 shows that area A′ and perimeter P ′ of
the parallel polygon satisfy the relations

A′ −A = ±aw +
a

2H
w2 (15.16)

and
P ′ − P = ±a

r
w, (15.17)

where r is the inradius and H is the altitude of the triangle with base of length
a. The plus sign is used if the translated edge is outside the circumgon, and the
minus sign if it is inside. These are the same relations obtained in the proof of
Theorem 15.3, except for a sign change in the term involving w2. Consequently,
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r

r

H

w

a’

a

Figure 15.19: One edge at a nonconvex corner. Moving the line through this edge
parallel to itself through a distance w forms a parallel polygon.

when (15.16) and (15.17) are used in the Comparison Lemma, we find the linear
terms in w cancel as before, but instead of (15.15) we are left with the relation

T ⊗A, (15.18)

where T is the area of the triangle of base a and altitude H. If the triangle is a
proper subset of the circumgonal region, as happens in Figure 15.19, then (15.18)
can be satisfied only when the symbol ⊗ is <. In other words, in this circumstance,
the new polygon has contour ratio κ′ < κ, which means that translating an edge at
a nonconvex corner in either direction decreases the contour ratio. Intuitively, this
is to be expected because the motion reduces the effect of nonconvexity.

If, in Figure 15.19, a different edge between two convex corners is moved, then
it is easy to see that the contour ratio may increase or decrease, depending on the
relation T ⊗A. Thus, for a nonconvex circumgon, moving an edge parallel to itself
could produce a parallel polygon whose contour ratio is greater than, equal to, or
less than that of the original circumgon. Summarizing, we have:

Theorem 15.5. Assume one edge of a nonconvex polygonal circumgon with
contour ratio κ is translated to form a parallel polygon with contour ratio κ′.

(a) If the translated edge is at a nonconvex corner, then κ′ < κ.
(b) If the translated edge is between two convex corners, the relation κ′ ⊗ κ is

equivalent to T ⊗A, where T and A are the areas described above.

In both cases (a) and (b), the relation κ′ ⊗ κ between the contour ratios is
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reduced to an equivalent relation T ⊗ A between areas, as in Case(b) of Theorem
15.3. The power of Theorem 15.5(b) lies in the fact that the complex behavior of
the contour ratio in the nonconvex case is reduced to simply comparing the area of
a triangle with that of the circumgon. This makes it possible to construct examples
of different types in which the relation is >,= or < . We have not explored what
happens to the contour ratio if more than one edge of a nonconvex circumgon is
translated.

Our original approach used multivariate calculus, treating the difference κ′ − κ
as a function of the independent distances w1, . . . , wn through which the n edges
were translated. By equating various partial derivatives to zero, we found that the
circumgon gave a local extremum, but to determine whether the extremum is a
maximum or minimum involved determining the algebraic sign of a quadratic form
involving second-order derivatives. From our discussion, we see that the quadratic
form is of fixed sign in the convex case, but need not be of fixed algebraic sign if the
circumgon is nonconvex. By using the Comparison Lemma, as was done in proving
Theorem 15.5, the argument is more elementary and more transparent than one
using multivariate calculus.

Zenodorus revisited.

We conclude this section with an application to a result attributed to Zenodorus:

Among all n-gons of given perimeter, the regular n-gon has largest area.

We will prove the equivalent statement:

Among all n-gons, the regular n-gon has smallest contour ratio.

Suppose we have a convex polygonal circumgon. If it is equiangular, all interior
angles are equal (have the same measure). Otherwise, at least one edge intersects its
adjacent tangent lines to form unequal interior angles. We can change its direction,
keeping it tangent to the incircle, until the two adjacent interior angles are equal.
This gives a new circumgon with the same incircle that has a smaller area and hence
a smaller contour ratio (because A = κr2). To see why the area is smaller, assume
first that the adjacent tangent lines are not parallel. Then the edge in question is
the base of a protruding triangle whose opposite vertex is the point of intersection
of the two adjacent tangent lines. It is part of a circumgon with one less edge but
having the same incircle, and we obtain the original circumgon by chopping it off.
This triangle has the same perimeter, regardless of the direction of the chopping
line (the perimeter is the sum of the lengths of the two fixed tangent segments from
the incircle to the point of intersection), so if we remove the triangle of largest area,
the leftover circumgon will have the smallest area.

Which direction should the chopping line have to remove the triangle of largest
area? As already mentioned, for a triangle with one given angle and fixed perimeter,
the isosceles triangle has the smallest contour ratio hence the largest area. A similar
argument applies in two other situations, when the adjacent sides are parallel, and
when they intersect at the other side of the circumgon, but we omit the details. In
all cases, moving the edge to produce equal interior angles will decrease the area
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and hence the contour ratio of the circumgon. This proves, by contradiction, the
result of Zenodorus, because an equiangular circumgon is also a regular polygon.

15.10 PROOF OF MAMIKON’S THEOREM

This section uses differential geometry to prove Mamikon’s Theorem. Start with a
smooth space curve Γ described by a position vector X(s), where s, the arc-length
function for the curve, varies over an interval, say 0 ≤ a ≤ s ≤ b. The unit tangent
vector to Γ is the derivative dX/ds, which we denote by T (s). The derivative of
the unit tangent is given by

dT

ds
= κ(s)N(s),

where N(s) is the principal unit normal and κ(s) is the curvature.
The curve Γ generates a surface S that can be represented by the vector para-

metric equation
y(s, u) = X(s) + uT (s),

where u varies over an interval whose length can vary with s, say 0 ≤ u ≤ f(s). As
the pair of parameters (u, s) varies over the ordinate set of the function f over the
interval [a, b], the surface S is swept out by tangent segments extending from the
initial curve Γ to another curve described by the position vector y(s, f(s)).

Geometrically, S is a developable surface, that is, it can be rolled out flat on a
plane without distortion. We refer to the surface S generated from Γ in this fashion
as a tangent sweep.

The area of S is given by the double integral

a(S) =

∫ b

a

∫ f(s)

0

|| ∂y
∂s

× ∂y

∂u
|| du ds.

To calculate the integrand, we have

∂y

∂s
=

∂X

∂s
+ u

dT

ds
= T (s) + uκ(s)N(s),

∂y

∂u
= T (s),

∂y

∂s
× ∂y

∂u
= uκ(s)N(s) × T (s),

so

||∂y
∂s

× ∂y

∂u
|| = uκ(s),

because ||N(s) × T (s)|| = 1. The integral for the area becomes

a(S) =

∫ b

a

(∫ f(s)

0

u du
)
κ(s) ds =

1

2

∫ b

a

f2(s)κ(s) ds.

Next, imagine the arc length s expressed as a function of the angle ϕ between
the tangent vector T and a fixed tangent line, say the tangent line corresponding
to s = a. When s is expressed in terms of ϕ, the function f(s) becomes a function
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of ϕ, and we write f(s) = r(ϕ). On the surface S, ϕ is the angle between tangent
geodesics, so the curvature κ is the rate of change of ϕ with respect to arc length,
κ = dϕ/ds. In the last integral we make a change of variable expressing s as a
function of ϕ. Then f2(s) = r2(ϕ), κ(s)ds = dϕ, and the integral for a(S) becomes

a(S) =
1

2

∫ ϕ2

ϕ1

r2(ϕ) dϕ, (15.19)

where ϕ1 and ϕ2 are the initial and final angles of inclination corresponding to s = a
and s = b, respectively. Formula (15.19) shows that the area a(S) does not depend
explicitly on the arc length of Γ at all; it depends only on the angles ϕ1 and ϕ2.
In fact, a(S) is equal to the area of a plane radial set with polar coordinates (r, ϕ)
satisfying 0 ≤ r ≤ r(ϕ) and ϕ1 < ϕ ≤ ϕ2.

When (15.19) is reformulated in geometric terms, it yields Mamikon’s Theorem
in a form that has a strong intuitive flavor. If we translate each tangent segment of
length r(ϕ) parallel to itself so that each point of tangency is brought to a common
vertex O, we obtain a portion of a conical surface that we call the tangent cluster
of the curve Γ. Then (15.19) gives us:

Mamikon’s Theorem. The area of a tangent sweep of a curve is equal to the
area of its corresponding tangent cluster.

The proof for special curves of the type described above follows from (15.19).
The tangent cluster of S lies on a conical surface that can be unrolled without
distortion of area, and the unrolled tangent cluster becomes a plane region whose
area in polar coordinates is given by (15.19). Since this is also the area of S, the
tangent sweep and its tangent cluster have equal areas. The theorem is also true
for more general surfaces that can be decomposed into a sum or difference of a
finite number of special surfaces of the type in the foregoing discussion. This will
take care of tangent sweeps generated by piecewise smooth curves. For example,
polygonal curves are treated in Figure 1.10, and in [55]. It also takes care of curves
with inflection points, where the sweeping tangent segments change their direction
of rotation.

15.11 ARCHIMEDES’ LAW OF THE LEVER

The famous law of the lever, discovered by Archimedes, states that:

Two weights are in equilibrium about a fulcrum if placed at distances inversely
proportional to the weights.

In other words, if weights A and B are placed at respective distances a and b
from the fulcrum, they will be in equilibrium if and only if

Aa = Bb. (15.20)

Here we deduce (15.20) by considering weight distribution along a uniform horizon-
tal rod. “Uniform” means that the weight of any portion of the rod is a constant
times its length. There is no loss of generality in assuming the constant is 1, so
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15.11. ARCHIMEDES’ LAW OF THE LEVER 499

the weight of any portion can be equated to its length. Figure 15.20 illustrates the
following property:

A uniform rod of finite length is in equilibrium when balanced on a fulcrum at
its midpoint, which is its center of gravity.

Figure 15.20: Uniform rod balanced at its center.

Imagine such a rod, balanced at its midpoint, and divided arbitrarily into two
pieces of lengths A and B, as shown in Figure 15.21a.

A/2B/2

A

B

(a)

(b)

A B 

Figure 15.21: (a) Rod divided into pieces of lengths A and B. (b) Each piece is replaced
by its weight placed at distances B/2 and A/2 from the fulcrum.

The concept of center of gravity tells us that equilibrium is maintained if a weight
A is placed at the center of gravity of the left piece, and a weight B is placed at
the center of gravity of the right piece. Now we show that the respective distances
from the fulcrum are a = B/2 and b = A/2, as indicated in Figure 15.21b.

To do this, imagine a horizontal x axis with x = 0 at the left end of the rod.
The right end is at x = A + B, and the center of gravity of the entire rod is at
x = (A + B)/2, its midpoint. The left piece, of length A, has its center of gravity
at x = A/2, which is at a distance B/2 to the left of the fulcrum. This tells us that
if we remove the piece of length B, the new center of gravity shifts to the left by
a distance B/2 from the fulcrum. Therefore a = B/2. If, instead, we remove the
piece of length A, the new center of gravity shifts to the right by a distance A/2
from the fulcrum, hence b = A/2.

Now we note that the law of the lever in (15.20) is equivalent to the equation
A · (B/2) = B · (A/2). This simple demonstration uses the ideas of Archimedes, but
the presentation is more transparent than that given in [44, p. 192].
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500 Chapter 15. APPENDIX

NOTES ON CHAPTER 15

The alternative treatment for determining the area of the parabolic segment and
of the region under the graph of a general power function was first published in [3].
The surprising relation between the exponential curve and the tractrix first appeared
in [8]. The proof of Mamikon’s Theorem given in Section 15.10 is essentially the
same as that given in [59], [8], and [22]. The material in Sections 15.6 through 15.9
and that in Section 15.11 has not been previously published.
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58. D. S. Mitrinovič, J. E. Pecarič, and V. Volenec, Recent Advances in Geometric

Inequalities. Kluwer, Dordrecht, 1989.

59. M. A. Mnatsakanian, On the area of a region on a developable surface, Dok-

ladi Armenian Acad. Sci. 73 (2) (1981), 97–101. (Russian); communicated by

Academician V. A. Ambartsumian.

60. ——, Annular rings of equal area, Math Horizons, (November 1997), 5–8.

61. I. Niven, Maxima and Minima Without Calculus. Dolciani Mathematical Ex-

positions, no. 6. Math. Assoc. of America, Washington, D.C., 1981

62. G. Salmon, A Treatise on Conic Sections, 6th ed. Chelsea, New York, 1960.

63. D. Seiple, E. Boman, and R. Brazier, Mom! There’s an astroid in my closet!,

Math. Magazine, 80 (2007), 104–111.

64. M-K. Siu, On the sphere and cylinder, College Math. J., 15 (1984), 326–328.

65. J. Steiner, Gesammelte Werke. Band 2, G. Reimer, Berlin, 1882.

66. H. Steinhaus, Mathematical Snapshots, 3rd American Ed., Oxford Univ. Press,

New York, 1969.

67. D. J. Struik, Lectures on Classical Differential Geometry, 2nd ed. Dover Pub-

lications, New York, 1988.

68. A. Todd, Bisecting a triangle, ΠME Journal, 11 (1999), 31–37.

69. L. Withers, Mamikon meets Kepler. email dated April 21, 2009.

70. R. C. Yates, A Handbook on Curves and Their Properties. J. W. Edwards, Ann

Arbor, 1947.

ApostolGeo MAA_iBibliography 501-504 CAIE Fix v3.indd   4ApostolGeo MAA_iBibliography 501-504 CAIE Fix v3.indd   4 10/8/12   9:19 AM10/8/12   9:19 AM



Index

Acceleration, 28
radial, 28

Angular momentum, 28
conservation of in central force field,

29
Apollonius’ kissing circles problem, 256
Archimedean dome, 119, 141

centroid of surface of, 150
surface area of segment of, 147
volume of, 143

Archimedean globe, 138
surface area of, 147
volume of, 143

Archimedean shell, 144
area of slice of, 148
centroid of slice of, 150
volume of, 144
volume of slice of, 144

Archimedean spiral, 201
Archimedes’ law of the lever, 498
Archimedes’ lemma for centroids, 379

modified for finite set of points, 395
Archimedes’ Palimpsest, 168
Archimedes’ cylindrical wedge, 412
Archimedes’ hypertombstone, 425
Arclength of:

astrogon and astroid, 85
autogon, 89, 97
cardiogon and cardioid, 85
catenary, 347
circular arc, 338
complementary trochogonal curves,

100
cyclogon, 79, 81
cycloid, 81, 342
deltogon and deltoid, 85
diamogon, 85
elliptic catenary, 91
epicyclogon, 83
epicycloid, 84, 343
exponential, 340
free-end curve, 336
hyperbolic catenary, 92
hypocyclogon, 83

hypocycloid, 84, 343
involute, 344
involutogon, 88
limaçon of Pascal, 24, 97
nephrogon and nephroid, 85
parabola, 342
parabolic catenary, 93
tangency curve, 335
tractrix, 339
trochogonal arch, 85

Area of:
annular ring, 6
Archimedean dome, 147
Archimedean globe, 147
astroidal sector, 276, 278
autogonal sector, 90, 97
circular disk, 104
complementary epitrochoidal and hy-

potrochoidal arches, caps, and
sectors, 51, 52, 100

cubic segment, 20, 477
cyclogonal arch, 68
cycloidal arch, 4, 33, 34
cycloidal cap, 35, 42
cycloidal ordinate set, 44
cycloidal radial set, 44
cycloidal sector, 34, 36, 86
cylindroidal wedge in n-space, 428
elliptical sector, 275
epicyclogonal arch, 72
epicycloidal cap, 39
epicycloidal ordinate set, 44
epicyloidal radial set, 44
epicycloidal sector, 39
epitrochogonal arch, 72
epitrochoidal cap and sector, 50
hyperbolic segment, 17
hypocyclogonal arch, 72
hypocycloidal cap, 39
hypocycloidal ordinate set, 45
hypocycloidal radial set, 45
hypocycloidal sector, 39
hypotrochogonal arch, 72
hypotrochoidal cap and sector, 51
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Balancing,
line segment and its projection, 405
portions of sphere and cylinder, 414,

417
regular circumgons, 406
regular circumgonal regions, 407

Base curve:
catenary, 57
cornu spiral, 55
cycloid, 58
hyperbolic spiral, 59
involute of a circle, 59
logarithmic spiral, 56
of trochoid, 33
polygonal, 72
tractrix, 57

Bifocal disk property, 224, 226, 239
Bifocal property of central conic, 245, 246

extended version, 254
transferred to parabola, 256, 259

Bipartite sweeping formula, 292
Holditch’s theorem as special case

of, 293
Boundary conversion in dissection, 297,

317
Building blocks of circumgonal region, 106

triangular region and circular sec-
tor, 106

Building blocks of circumsolid, 116
conical-faced, 117
cylindrical-faced. 117
flat-faced, 116
in n-space, 118
spherical-faced, 117

Bullet nose curve, 290

Cardiogon, 75, 85
Cardioid, 38, 43, 75, 85
Catenary, 346

arclength of, 347
as evolute of tractrix, 346
elliptic, 91
hyperbolic, 92
parabolic, 93
quadrature of, 347

Cavalieri’s principle, 139
Cavity principle, 486
Ceiling ellipse, 126

for volumes, 410
in higher-dimensional space, 421

Balance-wedge volume principle, 413

INDEX

�

506

oval ring, 7
parabolic segment, 4, 18, 475
region between tire tracks, 1, 5, 482
region enclosed by:

astrogon, 76, 85
astroid, 77, 85, 276
autogon, 90
bicycle tracks, 1, 5, 482
cardiogon, 76, 85
cardioid, 25, 76, 85
cyclogon, 85
cycloid, 85
deltogon, 77, 85
deltoid, 77, 85
diamogon, 78, 85
ellipse, 79
ellipsogon, 79
involute, 89
involutogon, 88
nephrogon, 76, 85
nephroid, 76, 85
limaçon, 26, 27, 97

region swept by portion of trammel,
279

region under:
cubic, 20, 477
exponential curve, 4, 16
catenary, 346
elliptic catenary, 91
general power function, 20, 22, 23,

476
hyperbola, 17
hyperbolic catenary, 92
logarithmic curve, 18
parabolic catenary, 93
sine curve, 149, 414
tractrix, 13, 473, 477

sectorial region, 211
slice of spherical shell, 9
spherical zone in n-space, 426
tangent sweep and tangent clus-

ter, 11, 12
trochogonal arch, 72
trochoidal arch, 74

Astrogon, 76, 85
Astroid, 38, 43, 77, 85

as envelope of trammel, 273, 275
Autogon, 89, 90

Balance-revolution principle,
for surface areas, 408
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INDEX 507

Ceiling projection, 193
Center of gravity, 377, 499
Center of mass, 377
Central force field, 28

conservation of angular momentum
in, 29

Centroid, 378
Centroid of:

boundary of triangle, 384
circular arc, 386
circular sector, 386, 429
circumgonal region, 429
elliptic shell, 162
finite set of points, 378, 388, 396

constructed graphically, 388, 394
Lambert-type projection on n-cylindroid,

433
n-hemisphere, 431
n-spherical zone, 432
plane lamina, 381
regular circumgonal arc, 428
slice of elliptic shell, 164
slice of uniform elliptic dome, 163
spherical sector, 430
spherical segment, 430
spherical wedge, 430
triangular lamina, 384
uniform Archimedean dome, 162
vertices of a triangle, 379

Circular directrices,
and wave motion, 263
for ellipse and hyperbola, 251
for parabola, 257

Circumgon, 105, 106
optimal, 121, 489

Circumgonal frame, 327
Circumgonal region, 106

area of, 107
centroid of, 110

Circumgonal ring, 107
area of, 109
centroid of, 112

Circumgonal wedge, 412
lateral surface area of, 413
volume of, 413

Circumsolid, 114, 118
centroid of, 130
optimal, 121, 123
property in n-space, 118
volume of, 114

Complete dissection, 317
designated, 328
of polygonal frames, 320
of polygonal regions, 318, 321
without flipping, 321

Cone,
Archimedean spiral lying on, 201
centroid of, 131
circumscribing a sphere, 115
general curve lying on, 191, 201
geodesic on, 202
intersection with:

circular cylinder, 123, 204
elliptic cylinder, 207
hyperbolic cylinder, 207
parabolic cylinder, 206
plane (conic section) 215

logarithmic spiral lying on, 201
volume and surface area relation, 115

Conics, 215
eccentricity of, 264
generalized, 197
new descriptions of, 213, 231, 265
reflection properties of, 263

Conjugate eccentricities, 221
Contour ratio, 301, 489
Cross curve, 290
Curvature, 351
Cusps of cycloidal special tanvolutes, 372
Cutting cylinder, 174

central conic profile, 208
circular, 204
parabolic, 206
tilted, 186, 209

Cyclogon, 67, 68
curtate, 71
prolate, 71

Cycloid, 5, 33, 68, 289
curtate, 71
prolate, 71

Cycloidal arch, 33, 34
Cycloidal cap, 33, 34

volume to outer surface area ratio,
118, 434

Circumsolid shell, 131
centroid of, 133, 134
volume of, 132, 133

Complementary
cycloidal curves, 43
trochogonal curves, 99
trochoidal arches, 52
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Diamogon, 78, 85
Director of conic section, 218
Directrix of conic section, 220

circular, 251, 257
floating, 257

Disk-director ratio, 218
relation to eccentricity, 220

Dissection, complete or standard, 317
Double conoid as n-circumsolid, 436
Double equilibrium, 407

in higher dimensional space, 421
Double inconoid inscribed in n-sphere,

440

Eccentric angle of ellipse, 273
Eccentricity:

conjugate, 221
of ceiling ellipse, 126
of conic sections, 264
extended, 265

Ellipse, 79
as envelope of trammel, 270, 275

Ellipsogon, 79
Ellipsograph, 269
Elliptic catenary, 91
Elliptic dome, 154

centroid of, 162
volume of, 162

Elliptic fiber, 158
Elliptic shell, 158

centroid of, 162
volume of, 162

Envelope of:
flexible trammel, 283, 286, 289
normals (evolute), 343
standard trammel, 273

Epicyclogon, 72
Epicycloid, 38
Epitrochogon, 72

Focal circle, 247
Focal disk, 217
Focal disk-director property, 218
Frames, polygonal

area and perimeter relation, 320
isoparametric, 321

complete dissection of, 321
isoperimetric properties of, 326
parallel, 327
regular, 325

Free-end curve, 10, 334

Generalized cyclogon, 71
Geodesic on a cone, 202
Governor of trammel, 284, 289
Graphical construction of centroid, 388

508 INDEX

Cycloidal sector, 33, 34
Cylinder, 139, 173

drilled, 182
profile, 173
punctured, 139
twisted, 216

Cylindrical wedge, 128, 148, 403, 412
Cylindroid in n-space, 424

punctured, 424

Deltogon, 77, 85
Deltoid, 38, 43, 77, 85, 289

Epitrochoid, 47, 74
Evolute, 343

of tractrix, 345
Evolutoid, 360
Exponential function, 4, 14, 16

arclength of, 340
quadrature of, 17
relation to tractrix, 480
subtangent to, 14

Fiber-elliptic dome, 159
Flexible trammel, 284

envelope of, 286
governor of, 284
trace of, 284

Hemisphere in n-space,
centroid recursions, 431
double equilibrium with projection

cone, 421
volume and surface area recursions,

427
Hexaconoid circumscribing n-sphere, 437
Hodograph, 29
Holditch’s theorem, 291
Hooke’s law, 449, 450
Hyperbola,

as envelope of trammel, 289
flipped, 221

Hyperbolic catenary, 92
Hyperbolic function, 346
Hyperbolic segment, 17
Hyperboloid of revolution, 215, 216
Hypocylogon, 72
Hypocycloid, 38
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Involute of logarithmic spiral, 365
Involutogon, 88
Isoparametric:

contour problem, 304
contour theorem, 302
inequality for rings, 311
polygonal frames, 320
regions, 297, 298
rings, 312
ring theorem, 313

Isoperimetric:
inequality, 299
problem of Zenodorous, 490, 496
problems, 299, 489
properties of frames, 320
quotient, 301, 489

Kepler’s string construction for parabola,
261

Lambert’s mapping, 157
Lambert-type projection in n-space, 433
Limaçon of Pascal, 24, 26, 97
Locus problems, 256, 443, 445, 447
Locus properties of conics, 245, 250, 260
Logarithm, 17

quadrature of, 18
Logarithmic spiral, 201, 356

arclength of, 356
as tanvolute, 356

Mamikon’s sweeping-tangent theorem, 8,
11, 13

Hypotrochogon, 72
Hypotrochoid, 48, 74

Incenter, 105
Incircle, 105
Incomplete autogon, 90
Incomplete epicyclogon, 87
Incomplete hypocyclogon, 87
Incomplete trochogon, 85
Inradius, 105, 114
Insphere, 114, 117
Instantaneous rotation principle, 35
Intrinsic description of a curve, 53, 334,

360, 374
Intrinsic equations, 333, 340, 360
Intrinsic second moment, 457
Involute of a circle, 344, 355
Involute of involute of a circle, 366

as envelope of trammel, 287
floating directrix of, 257
floating focal line of, 256
quadrature of, 18
subtangent of, 15

Parabolic catenary, 93
Parabolic segment, area of, 4, 18, 475
Parallel axis theorem, 449
Pedal curve, 24, 95
Pedal point, 24, 95
Polygonal elliptic dome, 152
Polygonal elliptic shell, 152
Power function, 20, 22, 287
Preservation of:

arclength, 175, 192, 210
area, 157, 211, 433
volume, 157

Profile equation, 174
Projections,

ceiling, 193
tangential, 406
wall, 203

Pursuit curve, 261, 331, 358
and tanvolutes, 357
generalized, 263, 347, 357, 481

Putnam problem, 398, 454
generalized, 398, 454

Pythagorean theorem, 6, 9, 446
Pythagorean triples, 443, 469

INDEX 509

proof of, 497
reverse type of application, 23

Mass density, 485
Meridian, 142
Method of punctured containers, 135
Moment of inertia, 449
Moment ratio lemma, 425
Moment-volume principle, 420
Moment-wedge volume principle, 412

Natural equation, 335, 340
Nephrogon, 76, 85
Nephroid, 38, 43, 76, 85
Newton’s second law, 28
n-graving on Archimedes’ hypertomb-

stone, 425

Optimal circumgons, 121, 489
Optimal circumsolids, 121
Oval ring, 7

Parabola, 4
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Spherical shell, 9, 140, 484
slice of, 473, 484
volume of, 140

Spherical slice, 10
surface area of, 146
volume of, 141

Spherical zone, area of, 409
Steiner’s theorems, 95, 96, 449

generalized, 97, 449, 452
Stellated polyhedron, 120
String mechanism to trace conics, 236,

246, 260
Subtangents, 14

constant, 14
linear, 15
used to draw tangent lines, 14

Sum of squares,
of distances, 398, 445, 447, 454, 460,

461
of integers, 443, 462

in arithmetic progression, 464
with alternating signs, 443, 470

Sum or difference of lengths, 213, 224,
228, 260

Tangency curve, 10, 334, 349

Quadratrix of Hippias, 289
Quadrature (see Area of)

Reducible solid, 151, 154
Reducibility mapping, 156
Regular circumgon, 406
Regular circumgonal region, 407
Ring ratio, 309
Roulette, 33

Sections of a cone, 216
Sections of a twisted cylinder, 216
Shell-elliptic dome, 160
Shifting principle, 234
Slicing principle, 139
Solid angle, 416

balancing lemma, 420
Special tanvolute, 355
Sphere,

surface area of, 147
recursions in n-space, 427

volume of, 104, 139
recursions in n-space, 427

with cavity, 160, 484

Trochogon, 72
curtate, 72
prolate, 72

Trochogonal arch, 72
Trochoid, 34
Twisted cylinder, 215, 216

section of, 216

Umbrella transformation, 194
Unwrapping curve from:

circular cone, 190
circular cylinder, 173, 175
developable surface, 190

Unwrapping equation, 174

Volume of:
Archimedean globe, 143
Archimedean shell, 144
circumsolid, 118
cylindrical wedge, 413

in n-space, 428
cylindroid in n-space, 425
ellipsoid, 153

510 INDEX

Tangent cluster, 10, 12
Tangent sweep, 10, 12

scaling property of area of, 19
Tanvolutes, 349

canonical form, 362
special, 355, 362

Tanvolutes of:
astroid, 370
cardioid, 361, 371
circle, 354
cycloid, epicycloid, and hypocycloid,

367
involute of a circle, 366
logarithmic spiral, 365
single point, 356

Terminator, 218
Tomography, geometrical treatment, 484
Tractrix, 13, 473, 477

as involute of catenary, 346
relation to exponential, 480
variations on, 483

Trammel, 269
envelope of, 286
flexible, 283
standard, 269
trace of point on, 284
zigzag, 280
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ellipsoid of revolution, 153
elliptic dome, 157
elliptic shell, 162
intersection of cone and cylinder,

123, 124
slice of Archimedean globe, 143
slice of spherical shell, 141
sphere, 104, 139

in n-space, 434
recursions for, 427

wedge, 152

Wall projection, 203
tilted, 209

Wedge, 35, 40
circular, 35
cylindrical, 142, 152, 413

in n-space, 428
volume and lateral surface area

of, 428
of Archimedean dome, 149
of elliptic dome, 164

Weighted average, 378, 448, 451

Zigzag trammel, 280
application to folding doors, 281

INDEX511
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